

Probing the QCD Phase Diagram at STAR

Dylan Neff (for the STAR Collaboration) UCLA

Outline

- → Motivation
- Experiment
- Measurements
 - Higher-Order Cumulants
 - Azimuthal Partitions
- Summary

QCD Phase Diagram

Goal:

Map out the QCD phase diagram with the Beam Energy Scan program

Baryon Chemical Potential μ_{R}

Vary beam energy to scan QCD phase space

STAR Detector

Identify (anti)protons with TPC and TOF in BES-I data

Observables - Cumulants

N: Net-proton multiplicity

$$C_1 = \langle N
angle \qquad C_n \colon n^{th}$$
 order cumulant $C_2 = \langle (\delta N)^2
angle \qquad \delta N = N - \langle N
angle$

$$C_3 = \langle (\delta N)^3
angle$$

$$egin{aligned} C_4 &= \langle (\delta N)^4
angle - 3 \langle (\delta N)^2
angle^2 \ C_5 &= \langle (\delta N)^5
angle - 10 \langle (\delta N)^3
angle \langle (\delta N)^2
angle \end{aligned}$$

$$C_{\circ} = \langle (SN)^{6} \rangle = 15 \langle (SN)^{4} \rangle \langle (SN)^{2} \rangle = 10 \langle (SN)^{6} \rangle$$

 $C_6 = \langle (\delta N)^6 \rangle - 15 \langle (\delta N)^4 \rangle \langle (\delta N)^2 \rangle - 10 \langle (\delta N)^3 \rangle^2 + 30 \langle (\delta N)^2 \rangle^3$

Cumulants ratios cancel trivial volume dependence

$$rac{C_5}{C_1} = rac{\chi_5}{\chi_1} \ rac{C_6}{C_2} = rac{\chi_6}{\chi_2}$$

 χ_n : n^{th} order cumulant

Cumulant ratios are directly related to susceptibilities from theory

Stephanov, Phys Rev Lett 107, 052301 (2011)

Higher-order cumulants

are more sensitive to

the correlation length

Sensitive probes for the nature of the QCD phase transition

Predicted Features of Crossover

\mathbf{C}_5 and \mathbf{C}_6

- ☐ Negative for LQCD, FRG (Functional Renormalization Group) crossover
- ☐ Positive for HRG (GCE) and UrQMD (no QCD transition)

Ordering of ratios (Net-baryon): $\frac{C_3}{C_1} > \frac{C_4}{C_2} > \frac{C_5}{C_1} > \frac{C_6}{C_2}$ - LQCD, FRG

STAR: Phys Rev Lett 130, 082301 (2023)

Collision Energy √s_{NN} (GeV)

Cumulant Ratio Ordering

STAR: Phys Rev Lett 130, 082301 (2023)

Suggests hadronic matter

Azimuthal Partitioning

Analysis Goal

Look for azimuthal correlations among protons indicative of clustering → possible sign of a first order phase transition

J Steinheimer, J Randrup Phys Rev C 87, 054903 (2013)

Compare to Binomial

Compare measured distributions to binomial

Systematic deviations from binomial suggest correlation between proton tracks

Focus on width of distributions

Distribution Width Interpretation

- Variance proxy for degree of clustering
- Total tracks per event fixed → clusters and voids are a packaged deal

Compare Variance to Binomial

Define observable as normalized deviation from binomial

 $\Delta\sigma^2=rac{\sigma^2-\sigma^2}{N(s)}$

 $\overline{N(N{-}1)}$

Single and Mixed Event variances very similar to binomial, though slight deviations apparent

Mixed Event $\langle \Delta \sigma^2 \rangle \approx 0 \rightarrow \text{very similar to binomial}$, Single Event is significantly smaller variance

AMPT MUSIC+FIST Lin, He Phys. Rev. C 96, 014910 Vovchenko et al Phys. Rev. C 105, 014904 (2022)

Vovchenko et al Phys. Rev. C 106, 064906 (2022)

- Significant repulsion observed in STAR data
- MUSIC+FIST with Excluded Volume more repulsive than base model which sees little correlation
- AMPT calculations show stronger repulsion than MUSIC+FIST models

MUSIC+FIST EV includes Excluded Volume effects no two baryons coalesce within the same 1 fm volume on the freezeout hypersurface

(2017)

Repulsion Found at All Energies

Dependence on proton event multiplicity flat

Repulsion Found at All Energies

Correlation Strength vs Energy

Negative $\Delta \sigma^2 \rightarrow \text{Repulsion}$

- → Repulsion observed between proton tracks in STAR data and all models
- STAR correlations from most central 0-5% centrality showed no significantly beam energy dependence and larger strength in correlation than AMPT. In addition, AMPT showed a moderate beam energy dependence.

$\langle \Delta \sigma^2 \rangle$ vs Event Multiplicity

Magnitude of repulsive interaction increases with decreasing multiplicity per event

Multiplicity dependence likely dominated by global momentum conservation

$\langle \Delta \sigma^2 \rangle$ vs Partition Width

Summary

Thanks for your attention!

- Observed increasingly negative $\frac{C_6}{C_2}$ with decreasing energy within uncertainty $\mathcal{O}(1\sigma)$ Trend consistent with lattice QCD calculations from $\sqrt{s_{NN}}$ = 7.7 GeV 200 GeV
- ☐ Within uncertainty, data from $\sqrt{s_{NN}}$ = 7.7 GeV 200 GeV seem to favor ordering expected from lattice
- \Box C6>0 and ordering violated at $\sqrt{s_{NN}}$ = 3GeV reproduced by UrQMD
 - Suggests hadronic matter dominant
- Strong proton repulsion observed
 - Stronger at lower event multiplicity
 - Likely momentum conservation background, obscuring any possible clustering signal
 - Trend with multiplicity is energy dependent in STAR data while energy independent for AMPT.
 To be further explored in the future.

Backup

$\langle \Delta \sigma^2 \rangle$ vs Event Multiplicity

Magnitude of repulsive interaction increases with decreasing multiplicity per event

$\langle \Delta \sigma^2 \rangle$ vs Event Multiplicity

Divide out the naively expected 1/N multiplicity dependence from global momentum conservation to better see STAR energy dependence

Simulating Correlated Tracks

- Built simple model of correlation to test analysis
- *n* tracks in event placed one at a time
 - First track has flat probability distribution in φ
 - Each track placed produces Gaussian distortion in P(φ) for all subsequent tracks
- Can model attraction (A>0) and repulsion (A<0)
 - 2 Parameter Model:
 - Amplitude (A)
 - Width (σ)

$$P(\phi) \propto \prod_{i=i}^{n} 1 + rac{A}{\sigma \sqrt{2\pi}} e^{-rac{1}{2} \left(rac{\phi-\phi_i}{\sigma}
ight)^2}$$

Simulations vs Total Protons

- Plot $\Delta \sigma^2$ vs the total number of protons in each event for a handful of simulation Amplitudes
- Observe consistently flat trends with average value correlated with A

Mixed distributions for toy model are statistically identical to binomial

Can Reliably Extract Correlation

- Plotting $\Delta \sigma^2$ vs the total number of protons, get good linear relationship with input simulation Amplitude
- This suggests the analysis can reliably extract the input correlation in the case of this simple model
- Changing Gaussian correlation width leads to different but still linear relationship

Slope vs Partition Width Simulation

- Dependence appears quadratic
- Different σ different x-intercept

Event Resampling

- Take multiple random partitions from each event (72 standard)
 - Agrees with analytical expectations for random tracks

Resampling improves resolution by utilizing more information in each event