Higher-Order Cumulants and Correlation Functions of Proton Multiplicity Distributions in $\mathbf{A u}+\mathbf{A u}$ Collisions at $\sqrt{s_{\mathrm{NN}}}=\mathbf{3} \mathbf{G e V}$

Samuel Heppelmann
University of California, Davis, Davis CA 95616, USA
(Dated: November 29, 2021)

The higher-order fluctuations of conserved quantities such as net baryon number are predicted to be sensitive to the non-equilibrium correlation length, ξ, and thus serve as indicators of critical behavior. Experimentally, fluctuations of proton and anti-proton numbers have been shown to be reliable proxies for baryons and anti-baryons. In the first Beam Energy Scan (BES-I) at the Relativistic Heavy Ion Collider (RHIC), which was run from 2010-2014, the higher-order cumulant ratio, C_{4} / C_{2}, of the net-proton multiplicity distributions shows a non-monotonic energy dependence between the energies of 7.7 to 62.4 GeV with a significance of 3.1σ. Motivated by the findings of BES I, the Solenoidal Tracker at RHIC (STAR) collaboration improved the detector performance of the STAR detector and began two additional physics programs: the BES-II and the fixed-target (FXT) program. While BES-II revisits the energies of BES-I with higher statistics and improved detector performance, the FXT program extends the lowest energy from $\sqrt{s_{\mathrm{NN}}}=7.7 \mathrm{GeV}$ to $\sqrt{s_{\mathrm{NN}}}=3.0$ GeV .
In this talk, we present the higher-order cumulants of proton multiplicity distributions of the FXT run in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{\mathrm{NN}}}=3.0 \mathrm{GeV}$. The data, 140 million minimum bias events, were recorded with the STAR detector at the RHIC facility with a $250 \mu \mathrm{~m}$ thick target (1% interaction probability). The ratios of both cumulants and correlation functions are presented as a function of centrality, acceptance, and collision energy. We discuss the physics implications of these results with comparisons to results from the HADES experiment and a hadronic transport model.

