Measurement of $\Lambda\bar{\Lambda}$ spin correlation in proton-proton collisions at STAR

Jan Vanek (for the STAR collaboration)

Brookhaven National Laboratory

Approximately fifty years ago, the polarization of Λ hyperons produced in unpolarized proton-beryllium collisions was discovered, though the origin of this phenomenon remains elusive. Many studies indicate that final-state effects, particularly from hadronization, play a significant role. Recently, it has been proposed that spin correlations of Λ hyperons could provide insight into the underlying mechanisms of Λ polarization. In this talk, we report the first experimental measurements of $\Lambda\bar{\Lambda},\,\Lambda\Lambda,\,$ and $\bar{\Lambda}\bar{\Lambda}$ spin-spin correlations in p+p collisions at $\sqrt{s}=200\,{\rm GeV},\,$ as recorded by the STAR experiment in 2012. Both short-range $(|\Delta y|<0.5$ and $|\Delta\phi|<\pi/3)$ and long-range $(0.5<|\Delta y|<2.0,\,$ or $\pi/3<|\Delta\phi|<\pi)$ Λ hyperon pairs were measured. We will discuss the implications of the measured spin-spin correlations in relation to the longstanding puzzle of Λ hyperon polarization, offering new insights into the hadronization of strange quarks.