

Precision measurement of Fifth and Sixth Order Fluctuation of (Net-)proton Multiplicity Distributions in Au+Au Collisions from BES-II Program at RHIC

Bappaditya Mondal (For the STAR Collaboration) National Institute of Science Education and Research, Bhubaneswar, India

Quark Matter 2025

We report precision measurements of fifth and sixth-order cumulants and factorial cumulants of (net-)proton multiplicity distribution in Au+Au collisions at  $\sqrt{s_{NN}}$  = 7.7 - 27 GeV measured by the STAR experiment from second phase of Beam Energy Scan program (BES-II) at RHIC. Using the high statistics data collected with upgraded detectors, we select protons and antiprotons at mid-rapidity |y| < 0.5 within  $0.4 < p_{\tau}$ (GeV/c) < 2.0. The dependence of measured cumulants and factorial cumulants on the collision energy are presented. Measurements are compared with the corresponding calculations from the lattice QCD, QCD based model FRG, hadronic transport model UrQMD and a thermal hadron resonance gas model.

| 1. Introduction      |     |     |     |                       | 4. Detector and measurement |                     |                      |                |
|----------------------|-----|-----|-----|-----------------------|-----------------------------|---------------------|----------------------|----------------|
| * QCD Phase Diagram: | LHC | SPS | AGS | B. Mohanty, N. Xu, an | Xiv:2101.09210              | * Detector upgrade: | * <u>Centrality:</u> | * Measurement: |
|                      |     | 3-3 | AGS |                       |                             | Improved dE/dV      |                      |                |



emperatu 80 Hadron Gas 3. High  $\mu_{\rm B}$ : possible 1st order phase 500 transition.

(MeV)

- RHIC FAIR Quark-Gluon Plasma NICA 1500 1000 Baryonic Chemical Potential  $\mu_{B}$  (MeV)
- 4. Goal: study the nature of the QCD phase transition.
- ◆ Observables: → Net-proton cumulants

 $C_1 = \langle N \rangle$ ,  $C_2 = \langle (\delta N)^2 \rangle$ ,  $C_3 = \langle (\delta N)^3 \rangle$ ,  $\delta N = N - \langle N \rangle$  $C_4 = \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2, \quad C_5 = \langle (\delta N)^5 \rangle - 5 \langle (\delta N)^3 \rangle \langle (\delta N)^2 \rangle$  $C_6 = \langle (\delta N)^6 \rangle - 15 \langle (\delta N)^4 \rangle \langle (\delta N)^2 \rangle - 10 \langle (\delta N)^3 \rangle^2 + 30 \langle (\delta N)^2 \rangle^3$ 

Proton factorial cumulants

- Improved dE/dX measurements.
- Larger η coverage:  $|\eta| < 1.0$  to  $|\eta| < 1.6$
- Reimuli3X: Charged particle multiplicity excluding proton and antiproton within  $|\eta| < 1.6$
- Event-by-event uncorrected net-proton distribution.



## **5. Results**

\* Net-proton cumulant ratio  $C_1/C_1$  and  $C_2/C_2$ :



\* Proton factorial cumulants  $K_A$ ,  $K_5$ ,  $K_6$ :

| A _ |                  |                                  |      |  |  |
|-----|------------------|----------------------------------|------|--|--|
| 4   | STAR Preliminary | Au+Au Collisions                 |      |  |  |
| -   | -                | proton                           |      |  |  |
|     | г                | y <0.5                           | 14.1 |  |  |
| 2   | -                | 0.4 < p <sub>r</sub> (GeV/c)<2.0 |      |  |  |
| I   |                  |                                  |      |  |  |





## A. Bzdak et al, PRC98, 054901 (2018), PRC100, 051902(R) (2019)

## **3. Data set details**

| Au+Au, energy (GeV)              | 7.7 | 9.2 | 11.5 | 14.6 | 17.3 | 19.6 | 27  |
|----------------------------------|-----|-----|------|------|------|------|-----|
| Events BES-II (10 <sup>6</sup> ) | 45  | 78  | 116  | 178  | 116  | 270  | 220 |

Around 7-18 times increase in statistics compared to BES-I.

• Uncertainty reduced by factor of 3.2 (stat) and 13.2 (sys) for  $C_6/C_2$  (0-40%) at 7.7 GeV.



order. No significant indication of twocomponent structure in proton distribution as expected for a 1<sup>st</sup> order phase transition.

M. S. Abdallah et al. (STAR Collaboration), Phys. Rev. Lett. 128, 202303 (2022) M. S. Abdallah et al. (STAR Collaboration), Phys. Rev. C 107, 024908 (2023). LQCD: A. Bazavov et al. Phys. Rev. D 101, 074502 (2020). FRG: W. j. Fu et al. Phys. Rev. D 104, 094047 (2021) HRG-CE: P. Braun-Munzinger et al. Nucl. Phys. A1008, 122141 (2021). UrQMD: M. Bleicher et al. J. Phys. G 25, 1859 (1999).



- 1. New and higher statistics measurements of hyper order cumulants ratios and factorial cumulants of (net-)proton distribution presented for Au+Au collisions at  $\sqrt{s_{_{NN}}} = 7.7 - 27$  GeV.
- 2. Measurements of net-proton  $C_5/C_1$  and  $C_6/C_2$  and proton factorial cumulants  $\kappa_{A}$ ,  $\kappa_{5}$  and  $\kappa_{6}$  for 0-40% and 70-80% centrality are close to zero within uncertainty.
- 3. Results compared with various models with and without QCD transition. No significant indications of two component shapes in proton distribution, as expected for a 1<sup>st</sup> order phase transition, observed.