

Precision Measurements of Kinematic Scan for Fluctuations of (Net-)proton Multiplicity Distributions in Au+Au Collisions from RHIC-STAR

Yige HUANG (for the STAR Collaboration)

Central China Normal University GSI Helmholtzzentrum für Schwerionenforschung

Supported in part by

April 9, 2025 Quark Matter 2025, Frankfurt, Germany

Outline

1. Motivation

2.STAR Experiment

3. Selected Results

- 1) Net-proton Number Distributions
- 2) Rapidity / p_T Scan of (Net-)Proton (Factorial) Cumulants
- 3) Energy Dependence and Significance
- 4) Finite-Size Scaling Study with C_2 and C_4

4. Summary

utions Proton (Factorial) Cumulants gnificance ith C_2 and C_4

Motivation

function of μ_R and T by varying the collision energy

[1]X.Luo, et al.: Particles 3(2020)2,278-307

- Model predictions: First-order phase transition at high μ_B and a critical end point
- Needs confirmation by experimental data!

Beam energy scan program in STAR maps the proton high moments as a

Motivation

N: Event-by-event multiplicity $\delta N = N - \langle N \rangle$

Cumulants

$$\Box C_{1} = \langle N \rangle$$

$$\Box C_{2} = \langle \delta N^{2} \rangle$$

$$\Box C_{3} = \langle \delta N^{3} \rangle$$

$$\Box C_{4} = \langle \delta N^{4} \rangle - 3 \langle \delta N^{2} \rangle^{2}$$

1) Related to the correlation length $\xi^{[1]}$ $C_2 \sim \xi^2$ and $C_4 \sim \xi^7$ ξ diverges at the critical point Higher order \rightarrow More sensitive!

Factorial Cumulants

$$\Box \kappa_1 = C_1$$
$$\Box \kappa_2 = -C_1 + C_2$$
$$\Box \kappa_2 = 2C_1 - 3C_2 + 3C_2$$

- $\Box \kappa_3 = 2C_1 3C_2 + C_3$ $\Box \kappa_4 = -6C_1 + 11C_2 6C_3 + C_4$
- 1) ordinary cumulant;
- 2) multi-particle correlations.

the search for QCD critical end point

[1]M.A.Stephanov: Phys.Rev.Lett. 107(2011),052301 [2]R.V.Ravai and S. Gupta: Phys.Lett.B 696(2011),459-463 [3]S.Ejiri, F.Karsch, K.Redlich: Phys.Lett.B 633(2006),275–282 [4]A.Bazavov, et al.: Phys.Rev.Lett. 109(2012),192302 [5]A.Borsanyi, et al.: Phys.Rev.Lett. 111(2013),062005

2) Related to the susceptibility χ^q

Directly comparable to the model^[2-5] calculations!

Can be expressed by linear combinations of

Directly capture and are sensitive to genuine

 $C_4/C_2 (= \kappa \sigma^2)$ baseline

Non-monotonic energy dependence of C_4/C_2 for the conserved baryon number (using protons as a proxy) indicates the existence of a critical region.^[1]

Higher-order cumulants of conserved charges serve as an important probe in

[1]STAR: arXiv:2504.00817[nucl-ex] [2]B.Ling and M.A.Stephanov: Phys.Rev.C 93(2016)3,034915

EEMC Magnet MTD BEMC

eTOF TOF TPC iTPC E

STAR Detector System

IIT

-

Data Sets

Energy (GeV)		7.7	9.2	11.5	14.6	17.3
Vz Cut (< cm)	y < 0.5	50	50	50	50	50
	y < 0.6	20	30	30	40	40
Number of Events (M)	y < 0.5	45	78	116	178	116
	y < 0.6	17	42	61	133	94
	y < 0.5 (BES-I)	3	-	6.6	20	-

- purity larger than 95%;
- and detector acceptance.

1. With appropriate cut selection and PID method, we ensure the proton

2. The selection of vertex-Z (V_z) is constrained by the requirements for purity

Net-proton Number Distributions

Efficiency Uncorrected Net-proton Number Distributions

- 2.

Net-proton Cumulant Ratios: Rapidity Scan

- Cumulant ratios decrease smoothly along rapidity window;
- 2. UrQMD^[1] describes the trend but fails to quantitatively reproduce the measurement, especially at high collision energy and within wide rapidity range.

[1]S.A.Bass, et al.: Prog.Part.Nucl.Phys. 41(1998),255-369

Net-proton Cumulant Ratios: p_{T} Scan

- 2. UrQMD deviates from data in high energy and wide $p_{\rm T}$ region.

1. Cumulant ratios decrease smoothly along $p_{\rm T}$ window, and saturate at around 1.8 GeV/c;

Energy Dependence: Net-proton C_4/C_2

Skellam baseline.

The wider the y (or p_T) window size, the farther net-proton C_4/C_2 deviates from

[1]STAR: arXiv:2504.00817[nucl-ex] [2]UrQMD: S.A.Bass, et al.: Prog.Part.Nucl.Phys. 41(1998),255-369 [3]Hydro. EV: Phys.Rev.C 105(2022)1,014904

[1]STAR: arXiv:2504.00817[nucl-ex] [2]UrQMD: S.A.Bass, et al.: Prog.Part.Nucl.Phys. 41(1998),255-369 [3]Hydro. EV: Phys.Rev.C 105(2022)1,014904

[1]STAR: arXiv:2504.00817[nucl-ex] [2]UrQMD: S.A.Bass, et al.: Prog.Part.Nucl.Phys. 41(1998),255-369 [3]Hydro. EV: Phys.Rev.C 105(2022)1,014904

Proton Factorial Cumulant Ratios: Rapidity Scan

• Smaller exponents than expected power-law $\kappa_n/\kappa_1 \sim (\Delta y)^{n-1}$ are observed.

Near the critical region, factorial cumulants' dependence on $\Delta y (= 2 \times y^{\max})$ is simpler and are suggested to study^[1]

Deep red solid curve (—): Fitting to $y = Ax^{\gamma}$

Light gray dashed curve (--): Fitting to $y = Ax^{n-1}$

^[1]B.Ling and M.A.Stephanov: Phys.Rev.C 93(2016)3,034915

Proton Factorial Cumulant Ratios: $p_{\rm T}$ Scan

1. κ_2/κ_1 is negative, κ_3/κ_1 is positive, and their amplitude increases with increasing window size; 2. κ_4/κ_1 is close to zero and doesn't show significant Δp_T dependence; 3. UrQMD can't quantitatively describe STAR data.

14

Finite-Size Scaling Study

• $\mu_{Bc} = 625 \pm 60$ MeV in Ref^[1] (w/ BES-I data)

2. Consistency observed from the overlap region of $U_4(\mu_R)$.

[1]A.Sorensen and P.Sorensen: arXiv:2405.10278[nucl-th] [2]A.Andronic, et al.: Nature 561(2018)7723,321-330 [3]J.V.Sengers and J.G.Shanks: Journal of Statistical Physics 137,857(2009) [4]STAR: Phys.Rev.C 107(2023)2,024908 [5]HADES: Phys.Rev.C 102(2020)2,024914

15

2) Binder cumulant: $U_4 = -3C_4/C_2^2$

- 3) Rapidity window size: W
- 4) Freeze out parameters^{[1][2]}: $T, \mu, dV/dy$
- 5) Critical exponents^[3]: γ , ν

6) Uncertainty: $\sigma = \sqrt{\sigma_{\text{stat.}}^2 + \sigma_{\text{sys.}}^2}$

Summary

- (factorial) cumulants and their ratios from STAR BES-II;
- 2. The significance of net-proton C_4/C_2 shows the largest negative
- $\kappa_n/\kappa_1 \sim (\Delta y)^{n-1}$ (up to 3rd order);

1. We report the measurements of kinematic range scan of (net-)proton

deviation at $\sqrt{s_{NN}} = 19.6$ GeV, which is consistent with reported results;

3. Smaller exponents are extracted compared to the critical inspired

4. FSS and Binder cumulant study leads to an interesting region of $\mu_R \sim 550$ to 650 MeV, which is consistent with Sorensens' work.

Acknowledgment

We thank RHIC operation

P. Sorensen, M. Stephanov, for exciting discussions

We thank V. Koch, K. Rajagopal, A. Rustamov, A. Sorensen,

Thank You!

