Measurements of J/Ψ polarization in p+p,p+Au and Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV by the STAR experiment

Abstract

Quarkonium production mechanisms in hadron collisions are not fully understood. Different models on quarkonium production can describe the measured production cross-sections in p+p collisions but have significantly different predictions on quarkonium polarization. Measurements of J/Ψ polarization in p+p collisions can distinguish these models to test the fundamental theory on quarkonium production. Measurements of J/Ψ polarization in p+Au and Au+Au collisions may provide insights into cold and hot nuclear matter effects on quarkonium production, which has been used extensively to study the properties of Quark-Gluon Plasma. In this poster, we present the measurements of J/Ψ polarization in p+p collisions at $\sqrt{s} = 200$ GeV using data taken in 2012 by the STAR experiment. We also present the progress on J/Ψ polarization measurements in p+Au and Au+Au collisions at V_{NN} = 200 GeV using the data taken in 2011 and 2015.

J/ψ signal

★ unlike-sign

6 GeV/c < J/ ψ p_T < 8 GeV/c

efficiency

Introduction

The angular distribution of the leptons from J/Ψ decay in the J/Ψ rest frame reflects J/Ψ polarization. It can be written as 2D Fourier expansion, whose leading-order term coefficients are directly related to the direction and magnitude of the J/Ψ polarization.

Fig.1 Angular distribution of decayed leptons from transversely (a) and longitudinally (b) polarized J/Ψ in the J/Ψ rest frame.^[1]

The angular distribution of the decayed leptons can be written as the following:

$$\frac{d^2\sigma}{d(\cos\theta)d\phi} = 1 + \lambda_{\theta}\cos^2\theta + \lambda_{\phi}\sin^2\theta\cos(2\phi) + \lambda_{\theta\phi}\sin(2\theta)\cos\phi$$

The goal of our study is to extract parameters, λ_{θ} and λ_{ϕ} , using the data taken by the STAR experiment.

Method

 \sim 2 GeV/c < J/ ψ p_T < 3 GeV/c

p+p @ 200 GeV

p+p @ 200 GeV

Fig.2 Complex of the STAR detector Time Projection Chamber $(0<\phi<2\pi,|\eta|<1)$ Tracking - momentum

Particle identification - dE/dx Time Of Flight

Particle identification - $1/\beta$ Barrel Electro-Magnetic Calorimeter Particle identification - p/E

Trigger on high p_T electrons

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 COSH

Fig.3 Distribution of unlike-sign, like-sign dielectron pairs as well as J/Ψ

candidates as a function of $cos\theta$ in p+p collisions using data taken in 2012.

3 GeV/c < J/ ψ p_{τ} < 4 GeV/c

The corrected J/Ψ yield as a function of cos θ is obtained by dividing raw J/Ψ yield by the reconstruction efficiency and then fitted with function $W(\cos\theta) = norm(1 + \lambda_{\theta}\cos^2\theta)$.

The same approach can be applied to the corrected J/Ψ yield as a function of ϕ , which is fitted with the function $W(\phi) = norm(1 + \frac{2\lambda_{\phi}}{3 + \lambda_{\theta}}\cos(2\phi))$.

1. The measurement is extended up to 8 GeV/c with Run12 data.

2. The previous measurement indicates a declining trend of λ_0 towards high p_T , but the result using Run12 data does not seem to follow this trend.

Improved method

Density function $f_{(\lambda_{\theta},\lambda_{\phi})}(\cos\theta,\phi)$

$$f_{(\lambda_{\theta},\lambda_{\phi})}(\cos\theta,\phi) = \left(\frac{\partial^{2}\sigma}{\partial\cos\theta\partial\phi} * eff\right)^{N_{J/psi}}$$

Negative logarithmic likelihood function $-\ln(L(\lambda_{\theta}, \lambda_{\phi}))$

$$-\ln(L(\lambda_{\theta}, \lambda_{\phi})) = -\ln(\prod_{k} f_{(\lambda_{\theta}, \lambda_{\phi})}(\cos \theta, \phi)) = -\sum_{k} \ln f(\cos \theta, \phi) = -\sum_{k} N_{J/psi} * \ln(\frac{\partial^{2} \sigma}{\partial \cos \theta \partial \phi} * eff)$$

where, k is J/Ψ candidate index for each $\cos\theta$ and ϕ bin.

The true decayed-lepton angular distribution function minimizes the negative logarithmic likelihood function among all possible angular distributions.

A toy Monte Carlo study is preformed with input polarization parameters equal to zero. The calculated negative logarithmic likelihood function from one pseudo-experiment is shown in Fig.7. The contour of minimum negative logarithmic likelihood value plus 1/2 is used to estimate the uncertainty of parameters and these results from ~250 pseudo-experiments are shown in Fig.8. The extracted polarization parameters are consistent with the input values, and the uncertainties associated with the parameters are also estimated.

Conclusion and Outlook

- 1. λ_{θ} is extracted up to 8 GeV/c using the STAR Run12 data. Results don't seem to indicate the negative trend at high p_T seen in previous measurements
- 2. Extraction of λ_{d} and λ_{inv} in both helicity and Collins-Soper frames using Run12 data is underway.
- 3. The 200 GeV p+p and p+Au data taken in 2015 have significantly more statistics to improve the measurement and possibly distinguish different models.
- 4. J/Ψ polarization measurement in Au+Au collisions using 2011data may help to understand the formation of the Quark-Gluon Plasma phase at temperatures where the $c\overline{c}$ bound state dissociates due to the screening of the color potential by surrounding quarks and gluons.

References

[1] P. Faccioli, C. Laorenco, J. Seixas, H.K. Wohri, Eur. Phys. J. C 69, 657 (2010)

- [2] STAR Collaboration. " J/ψ polarization in p+ p collisions at in STAR." Physics Letters B 739 (2014): 180-188.
- [3] Adare, A., et al. "Transverse momentum dependence of J/ψ polarization at midrapidity in p+ p collisions at $\sqrt{3}$ = 200 GeV." Physical Review D 82.1 (2010): 012001.
- [4] Chung, Hee Sok, et al. "Polarization of prompt J/ψ in proton-proton collisions at RHIC." Physical Review D 81.1 (2010): 014020.
- [5] Lansberg, J. P. "QCD corrections to J/ψ polarisation in pp collisions at RHIC." Physics Letters B 695.1 (2011): 149-156.

