

In part supported by

Global polarization of Λ hyperons in Au+Au $\sqrt{s_{\rm NN}}$ = 7.2 GeV collisions with fixed-target mode at RHIC-STAR experiment

Kosuke Okubo for the STAR collaboration

University of Tsukuba

abstract

Non-central heavy-ion collisions produce a large angular momentum that leads to vorticity of the created system. Due to the spinorbit coupling, spin directions of particles are aligned with the orbital angular momentum of the system. Global polarization of Λ and $\overline{\Lambda}$ hyperons has been measured in Au+Au collisions from $\sqrt{s_{\text{NN}}} = 7.7 \text{ GeV}$ to 5.02 TeV. The STAR fixed target program provides an opportunity to extend such measurements at even lower energies. In this poster, differential measurements such as centrality, rapidity and transverse momentum dependence of global polarization of Λ hyperons in Au+Au collisions at $\sqrt{s_{\text{NN}}} = 7.2 \text{ GeV}$ with the fixed-target configuration is reported.

Vorticity and magnetic field in HIC

√In non-central collisions...

- The created matter can exhibit strong vorticity.
 -Z.-T.Liang and X.-N. Wang, PRL94, 102301
- The strong magnetic field can appear in the initial state.

-D. Kharzeev, L. McLerran, and H. Warring, Nucl. Phys. A803, 227 (2008)

-L.McLerran and V.Skokov, Nucl. Phys. A929, 184 (2014)

Global polarization

✓ Polarization due to the spin-orbit coupling:

• Particle and anti-particle's spins are aligned with angular momentum, L.

✓ Spin alignment by magnetic field:

 Spin direction of particles and anti-particles are aligned in opposite direction due to the opposite signs of their magnetic moments.

- Charged particles can be identified via specific ionization energy loss in the TPC and mass estimated with the TOF.
- First-order event plane was reconstructed by EPD.

Measurement of the polarization

✓ Daughter proton preferentially decays along the Λ 's spin (opposite for anti- Λ).

 $\Lambda \rightarrow p + \pi^-$ (BR:63.9%, c τ ~7.9cm)

✓ Polarization can be measured via the distribution of the azimuthal angle of the daughter proton (in the Lambda rest frame).

$$P_{H} = \frac{8}{\pi \alpha_{H}} \frac{\langle \sin(\Psi_{1} - \phi_{p}^{*}) \rangle}{Res(\Psi_{1})}$$

- α_H : decay parameter ($\alpha_\Lambda=0.732\pm0.014$) P.A. Zyla et al. (PDG), Prog. Theor. Exp. Phys.2020, 083C01 (2020).
- $\Psi_1: 1^{st}$ -order event plane
- ϕ_p^* : azimuthal angle of the daughter proton in the Λ's rest frame

Event plane reconstruction

First order event plane

$$\Psi_{1} = \tan^{-1} \left(\frac{\sum w_{i} \sin(\phi_{i})}{\sum w_{i} \cos(\phi_{i})} \right) \qquad \begin{array}{l} w_{i}^{\text{TPC}} = \eta - y^{\text{mid}} \ w_{i}^{\text{EPD}} = \text{nMip} \\ \text{Second,} \\ w_{i} = \langle \cos(\phi^{A} - \Psi_{1}) \rangle \text{ A : pion or proton} \end{array}$$

First.

✓ Event plane resolution was calculated by 3-subevent method.

A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998).

 $Res(\Psi_1^A) = \sqrt{\frac{\langle \cos([\Psi_1^A - \Psi_1^B]) \rangle \langle \cos([\Psi_1^A - \Psi_1^C]) \rangle}{\langle \cos([\Psi_1^B - \Psi_1^C]) \rangle}}$

A : EPD most inner 4 rings B : TPC ($-0.5 < \eta < 0$) C : TPC ($-1.5 < \eta < -1.0$)

 p_{π}

J.Adams et al., NIM A968 (2020) 163970

Global polarization in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.2 GeV

✓ The increasing trend with the decrease of collision energy persists down to 2.4 GeV.

Centrality dependence

✓ Tend to Increase in more peripheral collisions.

Rapidity dependence

- ✓ The result does not show significant rapidity dependence within our acceptance.
- ✓ Polarization in large rapidity region can be explored in the future with iTPC and forward upgrade(2023+2025).
- ▶ p_T dependence

✓ No significant p_T dependence seen in data.

Summary and Outlook

Summary

✓ We presented measurements of Λ global polarization in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.2 GeV from STAR in fixed target mode.

- Positive polarization is observed.
- Λ polarization increases at lower collision energies.
- Increasing trend towards peripheral collisions as expected.
- No significant dependence on rapidity and p_{T} observed.

Outlook

 \checkmark Measurement of anti- Λ polarization at 7.2 GeV.

- Measurement global polarization with higher statistics.
 - Completed the data taking of BES II + FXT.

 $\sqrt{s_{\rm NN}} = 7.2 \, {\rm GeV} : 155 {\rm M}(2018)$

→ 155M(2018) + 317M(2020) + 88.6M(2021).

2018	Start	Stop	Good	Target	Status
27 GeV	May 10 th	June 17 th	555 M	700 M	Final
3.0 FXT	May 30 th	June 4 th	258 M	100 M	Final
7.2 FXT	June 11 th	June 12 th	155 M	none	Final
2019	Start	Stop	Good	Target	
19.6 GeV	Feb 25 th	April 3rd	478 M	400 M	Preliminary
14.6 GeV	April 4 th	June 3 rd	324 M	310 M	Post-prod QA
3.9 FXT	June 18 th	June 18 th	52.7 M	50 M	Produced
3.2 FXT	June 28 th	July 2 nd	200.6 M	200 M	Post-prod QA
7.7 FXT	July 8 th	July 9 th	50.6 M	50 M	Produced
200 GeV	July 11 th	July 12 th	138 M	140 M	March ?
2020	Start	Stop	Good	Target	Status
11.5 GeV	Dec 10 th	Feb 24 th	235 M	230 M	Summer?
7.7 FXT	Jan 28 th	Jan 29 th	112.5 M	100 M	Produced
4.5 FXT	Jan29 th	Feb 1 st	108 M	100 M	Produced
6.2 FXT	Feb 1 st	Feb 2 nd	118 M	100 M	Produced
5.2 FXT	Feb 2 nd	Feb 3 rd	103 M	100 M	Produced
3.9 FXT	Feb 4 th	Feb 5 th	117 M	100 M	Produced
3.5 FXT	Feb 13 th	Feb 14 th	115.6 M	100 M	Produced
9.2 GeV	Feb 24 th	Sep 1 st	161.8 M	160 M	Summer?
7.2 FXT	Sep 12 th	Sep 14 th	317 M	None	
2021	Start	Stop	Good	Target	Status
7.7 GeV	Jan 31 st	May 1 st	100.9 M	100 M	May?
3.0 FXT	May 1 st	June 28 th	2103 M	2.0 B	
9.2 FXT	May 6 th	May 6 th	53.9 M	50 M	
11.5 FXT	May 7 th	May 7 th	51.7 M	50 M	
13.7 FXT	May 8 th	May 8 th	50.7 M	50 M	
17.3 GeV	May 25 th	June 7 th	256.1 M	250 M	
7.2 FXT	June 3 rd	July 3 rd	88.6 M	None	