

Di-hadron correlations with event shape engineering in Au+Au collisions at the STAR experiment

Ryo Aoyama, for the STAR Collaboration University of Tsukuba, TCHoU Nov. 17th, 2018 Quark and Nuclear Physics @Tsukuba

STAR Jets with di-hadron correlations in heavy-ion collisions

- Jets interact with colored matter and lose their energy : jet quenching
 probe energy loss mechanisms in the QGP
- ✦ high-p⊤ : disappearance of back-to-back jetlike peak in central Au+Au collisions
 - jet suppression in the QGP

- Iow-pT : enhanced yield on both near and away side compared to p+p collisions
 - re-distribution of deposited energy

STAR Event plane and higher order flow harmonics

- Spatial anisotropy due to almond-like shape and event-by-event fluctuations of overlapping region of nuclei in non-central heavy-ion collisions
- Deformation converted into momentum space by collective motion (flow)
 - azimuthal anisotropy

azimuthal distribution :
$$\frac{dN}{d\phi} \propto 1 + \sum_{i} 2v_n \cos n(\phi - \Psi_n)$$

n-th order event plane : $\Psi_n = \frac{1}{n} \cdot \frac{\sum w_i \sin(n\phi_i)}{\sum w_i \cos(n\phi_i)}$

STAR Event plane dependent di-hadron correlations

- Possibility of control in-medium path length of jets
- EP dependence of jet-medium interactions
 - Single peak in the away side with the in-plane trigger
 - Away-side peak becomes lower and broadened as trigger direction changes from in-plane to out-of-plane

Rest of this talk : |∆η|<1 ► jet cone AND away-side are focused on

STAR Event plane dependent di-hadron correlations

STAR Event plane dependent di-hadron correlations

0.5

-1.5 -1 -0.5 M

STAR, PRC 80, 064912 (2009)

ridge

Rest of this talk : |∆η|<1 ► jet cone AND away-side are focused on

STAR Event shape engineering (ESE)

- Selection of event-by-event flow amplitude
 - event-by-event v₂ largely fluctuates in a fixed centrality bin
 - control fluctuating v_2 by selecting the magnitude of flow vector q_2
 - Possibility to control the initial geometry

J.Schukraft, A.Timmins and S.A.Voloshin, PLB 719 (2013), 394-398

$$Q_{2,x} = \sum w_i \cos(2\phi_i) / \sqrt{\sum w_i}$$
$$Q_{2,y} = \sum w_i \sin(2\phi_i) / \sqrt{\sum w_i}$$
$$q_2 = \sqrt{Q_{2,x}^2 + Q_{2,y}^2}$$

w_i: weighting factor

A.M.Poskanzer, S.A.Voloshin, PRC 58 (1998), 1671-1678

correlation between q_2 and ϵ_2

q₂

Separation of volume effect and geometry effect could be allowed

- Combination of centrality selection and event shape engineering allows control of the initial geometry while keeping the average energy density (multiplicity) fixed
 - Study difference of jet modification in medium expansion
- Di-hadron correlations with event shape engineering allow new differential insight into energy loss mechanisms as a function of initial energy and shape
 - Detailed information which was previously averaged out
- ✦ Analysis with minimum-bias Au+Au at √s_{NN} = 200 GeV data collected by STAR in 2011

- \bullet v₂ is measured via event plane method with TPC-EP with taking 1.0 η gap
- ♦ 20% largest and smallest q₂ vectors are selected with the same region as TPC-EP
- ♦ Top 20% q₂ selection leads to ~10% larger v₂ events
- ♦ Bottom 20% q₂ selection leads to ~8% smaller v₂ events

- Polar representations are displayed so that the correlation shapes are visually clear
- Relative angle $\Delta \phi$ starts from red line and rotate toward counter-clockwise direction
- The amplitudes of correlated yield correspond to the radius

- Polar representations are displayed so that the correlation shapes are visually clear
- Relative angle $\Delta \phi$ starts from red line and rotate toward counter-clockwise direction
- The amplitudes of correlated yield correspond to the radius

- Polar representations are displayed so that the correlation shapes are visually clear
- Relative angle $\Delta \phi$ starts from red line and rotate toward counter-clockwise direction
- The amplitudes of correlated yield correspond to the radius

- Polar representations are displayed so that the correlation shapes are visually clear
- Relative angle $\Delta \phi$ starts from red line and rotate toward counter-clockwise direction
- The amplitudes of correlated yield correspond to the radius

STAR Trigger angle dependence

in-plane trigger

✦ Near side

out-of-plane trigger

- No difference between large-q₂ and small-q₂ events with trigger out-of-plane
- Peak height is enhanced with going to in-plane trigger
 - The enhancement is larger in large-q₂ events

✦ Away side

- Peak is almost fully suppressed with trigger out-of-plane both in large-q₂ and small-q₂ events and remnant yield in the EP direction has q₂ dependence
- Peak height is enhanced with going to in-plane trigger
 - ► Low-p_T particles preferentially escape toward in-plane direction?

STAR Centrality dependence

- \blacklozenge See how shifting of away-side peak depends on centrality and q₂
- ✦ Larger shift in large q₂ events
- ✤ No q₂ dependence in peripheral events

Related to path-length or initial eccentricity?

- Di-hadron correlations with respect to the event plane with event shape engineering at the STAR experiment
 - Separation between large-q₂ and small-q₂ events enhances difference of correlation shape while preserving average multiplicity in central and mid-central collisions
 - new handle to differentially study partonic energy loss mechanisms

Future work

- Near- and away-side structure will be quantitatively discussed
- Experimental results will be compared with some models

Back up

STAR Correlations with q₂ selection

- ✦ High-p⊤ particles penetrate more with short path length
- ◆ Low-p_T particles are pushed toward in-plane direction and this effect is stronger in large q₂
 - path-length dependent yield on the away side

STAR Comparison of polar and traditional distributions

R. Aoyama, Quark and Nuclear Physics @Tsukuba 15/12

STAR Comparison of polar and traditional distributions

STAR Correlations before flow subtraction and EP correction

- Correlation shape
 - Left/Right mirror symmetric trigger selection w.r.t. EP leads to mirror-imaged distributions on the away side
- Flow background subtraction
 - Background shape is determined by data-driven simulation
 - Background level is determined by inclusive trigger data with ZYAM assumption
- Correction of trigger smearing effect
 - Smearing of trigger particle's angle due to limited EP resolution is corrected with unfolding method after flow subtraction

STAR Correlations after flow subtraction and EP correction

- ✦ Amplitudes increase as going to in-plane trigger on both near and away side
- Left/Right separation leads to asymmetric path length
 - averaged out in the previous measurement
- Away-side particles pushed toward in-plane direction

path-length dependent jet modification

STAR Correlations after flow subtraction and EP correction

- ✦ Amplitudes increase as going to in-plane trigger on both near and away side
- Left/Right separation leads to asymmetric path length
 - averaged out in the previous measurement
- Away-side particles pushed toward in-plane direction

path-length dependent jet modification

Res{ Ψ_n^A } is shown in the upper figure

STAR Data-driven flow MC simulation

Reconstruct flow distribution by Monte Carlo simulation

Input parameter : v_2 , v_3 , v_4 , χ_{42} , and Res{ Ψ_2 }

1. generate Ψ_2 , Ψ_3 at random and Ψ_4 with considering correlation between Ψ_2 and Ψ_4

- 2. make flow distribution which reproduce v_n
- 3. smear trigger particle's angle with probability distribution when selecting trigger particles angle
- 4. generate particles at random along the flow distribution and calculate $\Delta \varphi$

Probability distribution can be written with χ_n which is calculated with following formula :

$$\left\langle \cos[kn(\Psi_n^{obs} - \Psi_n^{real})] \right\rangle = \frac{\sqrt{\pi}}{2\sqrt{2}} \chi_n e^{-\chi_n^2/4} \left[I_{(k-1)/2} \left(\frac{\chi_n^2}{4}\right) + I_{(k-1)/2} \left(\frac{\chi_n^2}{4}\right) \right]$$

Jean-Yves OLLITRAULT, PRD 48 (1993) 1132

example of probability distributions of $\Delta \Psi_2$

STAR Trigger smearing correction via fitting method

Assuming the associate-particles yield are distributed with respect to the event plane, we can correct the effect of trigger smearing due to the limited event-plane resolution which is similar to the resolution correction in the flow measurement of the single particles.

Applying a Fourier fitting eq.(3) to $1+Y(\phi_s,\Delta\phi)$ as a function of ϕ_s with a phase shift $\Delta\phi$, v_n^Y can be determined and the azimuthal distributions can be corrected with corrected v_n^Y by the event-plane resolution eq.(5).

$$\frac{dN_{cor}^{1+PTY}}{d(\phi^{a}-\Psi_{2})} = 1 + 2\frac{v_{2}^{Y}}{\sigma_{2}}\cos 2(\phi_{s}+\Delta\phi) + 2\frac{v_{4}^{Y}}{\sigma_{42}}\cos 4(\phi_{s}+\Delta\phi) \quad \dots (2)$$

$$F(\phi_{s})^{raw} = 1 + 2v_{2}^{raw}\cos 2(\phi_{s}+\Delta\phi) + 2v_{4}^{raw}\cos 4(\phi_{s}+\Delta\phi) \quad \dots (3)$$

$$F(\phi_{s})^{cor} = 1 + 2\frac{v_{2}^{raw}}{\sigma_{2}}\cos 2(\phi_{s}+\Delta\phi) + 2\frac{v_{4}^{raw}}{\sigma_{42}}\cos 4(\phi_{s}+\Delta\phi) \quad \dots (4)$$

$$1 + Y^{cor}(\phi_s, \Delta \phi) = \frac{F(\phi_s)^{cor}}{F(\phi_s)^{raw}} \cdot (1 + Y^{raw}(\phi_s, \Delta \phi)) \quad \dots \text{(5)} \qquad \begin{array}{l} \sigma_2 = <\cos 2(\Psi_2^{\text{obs}} - \Psi_2^{\text{real}}) > \\ \sigma_{42} = <\cos 4(\Psi_2^{\text{obs}} - \Psi_2^{\text{real}}) > \end{array}$$

PHENIX, PRC 84 (2011) 024904

R. Aoyama, Quark and Nuclear Physics @Tsukuba 21/12

STAR Trigger smearing correction via iteration method

STAR Sources of systematics

- \bullet v₂, v₃ and v₄
 - including track cut, EP selection, and difference between v_n {EP} and v_n {2PC}
- ✦ EP resolution
 - difference between East and West for trigger smearing in toy-MC
- ✦ EP correlation between different order harmonics
 - only Ψ_2 - Ψ_4 correlations
- $\bullet \Delta \phi$ range used for determination of zero-yield baseline
 - π/6 (default), π/12, π/4
- Trigger smearing correction
 - range of fitting method and iteration method
 - RMS of various smoothing parameter for φ_s and $\Delta\varphi$