Measurement of Off-diagonal cumulants between net-proton and net-kaon multiplicity distributions in STAR

Changfeng Li

(For the STAR Collaboration)

Shandong University, Qingdao, China

QPT 2021

Changfeng Li, SDU

QCD Phase Diagram and STAR measurements

QCD Phase Diagram

RHIC Beam Energy Scan Program goals:

- Study the QCD phase diagram
- Search for the QCD critical point

Higher order diagonal cumulant measurements to search for the location of QCD Critical Point:

Net-charge: PRL 113, 092301 (2014) Net-Proton: PRL 126, 092301 (2021); 112, 32302 (2014) Net-Kaon: Phys. Lett. B 785 (2018) 551 Net-Lambda: PRC 102 (2020) 24903

Off-diagonal cumulants:

- Sensitive to the QCD phase transition
- Provide another constraint to determine freeze-out parameters

PRD 73, 014004 (2006); PRL. 95, 182301 (2005) ; PRC 74, 054901 (2006)

Recent STAR off-diagonal cumulant measurements: PRC 100, 014902 (2019)

Off-diagonal susceptibility

- Correlation between net-p and net-k as a function of \sqrt{s}_{NN} at different phase space window, provide additional constraint to calculate the freeze-out parameters
- Better understanding of Hadron Resonance Gas (HRG) Model and Lattice QCD

 Provide additional information on undiscovered hadron states in Baryon-strange sector
[arXiv: 2107.00588v1]

Higher order off-diagonal cumulants are sensitive

$$\chi_{\alpha}^{2} = \frac{1}{VT^{3}}C_{\alpha}^{2}, \qquad \chi_{\alpha,\beta}^{1,1} = \frac{1}{VT^{3}}C_{\alpha,\beta}^{1,1}$$

Off-diagonal cumulants measurement in STAR

Off-diagonal and diagonal matrix elements of 2nd order cumulants

$$\sigma = \begin{pmatrix} \sigma_Q^2 & \sigma_{Q,p}^{1,1} & \sigma_{Q,k}^{1,1} \\ \sigma_{p,Q}^{1,1} & \sigma_p^2 & \sigma_{p,k}^{1,1} \\ \sigma_{k,Q}^{1,1} & \sigma_{k,p}^{1,1} & \sigma_k^2 \end{pmatrix}$$

 $\sigma_{X,Y}^{1,1} = \left\langle \left(X - \left\langle X \right\rangle \right) \left(Y - \left\langle Y \right\rangle \right) \right\rangle$ $\sigma_X^2 = \left\langle \left(X - \left\langle X \right\rangle \right)^2 \right\rangle$

Cp,k is negative at high energy (200 GeV) and positive at low energy (7.7 GeV).

STAR detector system

Time Projection Chamber (TPC):

- · |η| < 1
- Transverse momentum: 0.15 GeV/c < p_T
- 2π azimuthal coverage

Particle identification using both TPC and Time of Flight (TOF)

Centrality definition: using uncorrected charged particle multiplicity within $0.5 < |\eta| < 1.0$

New Au+Au 27 GeV data in STAR

High statistics data taken in year 2018 Event selection:

- Primary vertex position along the beam pipe between -30 cm to +30 cm
- Transverse primary vertex position within 2 cm relative to the beam center
- Total minimum bias events: 258 Million Charged Track selection:

 $p_{\rm T}$ range: 0.4 to 1.6 GeV/c and $|\eta|$ < 0.5

Particle	TPC	TPC+TOF
$p(\overline{p})$	$0.4 < p_T < 0.8(GeV/c)$ $ n\sigma_p < 2$	$0.8 < p_T < 1.6(GeV/c)$ $0.6 < m^2 < 1.2[(GeV/c^2)^2]$
k+(k-)	$ \mathbf{n}\sigma_{\mathrm{K}} < 2, \mathbf{n}\sigma_{\pi} > 2$	$0.4 < p_T < 1.6(GeV/c)$ $0.15 < m^2 < 0.4[(GeV/c^2)^2]$

Centrality dependence of diagonal and off-diagonal cumulants

- New results (Run-18) are consistent with the published result (Run11).
- Net-kaon and net-proton are highly anti-correlated at central events
- Run18 dataset provides better statistical precision

Centrality dependence of ratio between diagonal and off-diagonal cumulants

Proxy to baryon-strangeness correlation with respect to strangeness fluctuation

- New results (Run-18) results are consistent with the published result (Run11).
- Correlation between net-kaon and net-proton with respect to net-kaon fluctuations is negative at all centralities
- Run18 dataset provides better statistical precision

Ratio between diagonal and off-diagonal cumulants

Proxy to baryon-strangeness correlation with respect to strangeness and baryon fluctuations

The values of $\sigma_{p,k}^{1,1}/\sigma_p^2$ and $\sigma_{p,k}^{1,1}/\sigma_k^2$ are different.

This difference is not seen in UrQMD model, within uncertainty. These results are used to estimate freeze-out parameters.

Summary and outlook

- We analyzed Au+Au 27 GeV dataset taken in the year 2018
- New results are consistent with the published results providing better statistical precision
- Observations:

Correlation between net-kaon and net-proton with respect to net-kaon fluctuations is negative at all centralities

Correlation between net-kaon and net-proton with respect to net-proton and net-kaon fluctuations are different

UrQMD qualitatively explains the data

- These results provide additional constraint to calculate the freeze-out parameters
- We plan to work on higher order off-diagonal cumulants in STAR using BES-II dataset

