

Azimuthal Transverse Single-Spin Asymmetries of Identified Hadrons Within Jets from Polarized pp Collisions at \sqrt{s} = 200 GeV

Ting Lin (林挺), for the STAR Collaboration

Shandong University (山东大学)

Supported in part by

Office of

Science

Challenges in Transverse Single-Spin Asymmetry

- Large transverse single-spin asymmetry (*A_N*) at forward rapidities has been measured in transversely polarized proton-proton collisions;
- pQCD predicts very small asymmetries in the hard scattering process;
- Twist-3 and transverse momentum dependent (TMD) frameworks are developed to describe this transverse spin
 Elke Aschenauer et al. arXiv:1602.03922 [nucl-ex]

Collins Effect

Correlation between the polarization of a scattered quark and the momentum of a hadron fragment transverse to the scattered quark direction:

- Collins effect combines the quark transversity in the proton with the spin-dependent Collins fragmentation function, leading to azimuthal modulations of identified charged hadron yields about the jet axis;
 - Integral of transversity gives the nucleon tensor charge ($\delta q=$
 - $\int_{0}^{1} \left(h_{1}^{q}(x) h_{1}^{\bar{q}}(x) \right) dx);$
 - Difference of helicity and transversity has direct x-dependent connection to quark orbital angular momentum;
 - Collins fragmentation function in pp probes fundamental questions regarding factorization, universality, and evolution of TMDs.

Transverse Single-Spin Asymmetry

For pions within jets, the spin dependent cross section is:

 $d\sigma^{\uparrow}(\phi_{S},\phi_{H}) - d\sigma^{\downarrow}(\phi_{S},\phi_{H})$ $\sim d\Delta\sigma_{0}\sin(\phi_{S})$ $+d\Delta\sigma_{1}^{-}\sin(\phi_{S}-\phi_{H}) + d\Delta\sigma_{1}^{+}\sin(\phi_{S}+\phi_{H})$ $+d\Delta\sigma_{2}^{-}\sin(\phi_{S}-2\phi_{H}) + d\Delta\sigma_{2}^{+}\sin(\phi_{S}+2\phi_{H})$

• Different modulations of the transverse singlespin asymmetry can be isolated and studied:

$$A_{UT}^{\sin(\phi)}\sin(\phi) = \frac{\sigma^{\uparrow}(\phi) - \sigma^{\downarrow}(\phi)}{\sigma^{\uparrow}(\phi) + \sigma^{\downarrow}(\phi)}$$

STAR, Phys. Rev. D 97, 032004 (2018) Umberto D'Alesio *et al*. Phys. Rev. D 83, 034021 (2011)

Collins Effect in pp

$$A_{UT}^{\sin(\varphi_{S}-\varphi_{H})} \propto \frac{\sum_{a,b,c} \boldsymbol{h}_{1}^{a}(\boldsymbol{x}_{1},\boldsymbol{\mu}) f_{b}(\boldsymbol{x}_{2},\boldsymbol{\mu}) \sigma_{ab \to c}^{\text{Collins}} \boldsymbol{H}_{1,h/c}^{\perp}(\boldsymbol{z}_{h},\boldsymbol{j}_{T};\boldsymbol{Q})}{\sum_{a,b,c} f_{a}(\boldsymbol{x}_{1},\boldsymbol{\mu}) f_{b}(\boldsymbol{x}_{2},\boldsymbol{\mu}) \sigma_{ab \to c}^{\text{unpol}} D_{h/c}(\boldsymbol{z}_{h},\boldsymbol{j}_{T};\boldsymbol{Q})}$$

Zhong-Bo Kang et al., JHEP 11, 068 (2017) and PLB 774, 635 (2017)

- Collins effect in pp involves a mixture of collinear and TMD factorization:
 - Initial jet production involves the collinear transversity h_1^a ;
 - Polarized quark then fragments according to the TMD Collins fragmentation function $H_{1,h/c}^{\perp}$;
- Cleaner kinematic separation of transversity and TMD physics than SIDIS, which convolutes the TMD transversity with the Collins FF.

Relativistic Heavy Ion Collider (RHIC)

- World's first and only polarized proton+proton collider;
 - Provide polarized proton+proton collisions up to 510 GeV;
- Spin pattern changes from fill to fill with little depolarization;
 - Siberian snakes preserve the polarization;
 - Spin rotators select spin orientation;
 - proton-Carbon (pC) polarimeters and hydrogen gas jet (H-Jet) measure the polarization.

STAR Data and Kinematic Coverage

Year	2011	2012	2015	2017	
\sqrt{s} (GeV)	500	200	200	510	
$L_{int} (pb^{-1})$	25	14	52	320	
Polarization	53%	57%	57%	55%	

- STAR covers a similar range in momentum fraction (x) to that of SIDIS experiments with much higher Q^2 ;
- 200 GeV results provide better statistical precision at higher momentum fraction region than 500 GeV results;
- These two different energies will provide additional experimental constraints on evolution effects and insights into the size and nature of TMD observables at the future Electron-Ion Collider.

Collins Asymmetry from STAR

- First Collins effect measurements in pp collisions are qualitatively described by two recent calculations that combine the transversity distribution from SIDIS with the Collins FF from e⁺e⁻ collisions:
 - Assume universality and factorization;
 - DMP&KPRY: no TMD evolution;
 - KPRY-NLL: TMD evolution up to NLL.

July, 2021

 π^{\pm} Azimuthal Distribution in Jets

 Significant Collins asymmetries have been observed from 200 GeV measurement:

- Collinear transversity is probed most directly in the jet p_T dependence;
- Collins TMD FF is sensitive to the (j_T, z) dependence. July, 2021 Ting Lin - Shandong University

K^{\pm} Azimuthal Distribution in Jets

- K^+ , which can be produced through favored fragmentation of a valence u quark, has asymmetries that are consistent within the currently large statistical uncertainties with the π^+ asymmetries;
- *K*⁻, which is produced by unfavored fragmentation, has asymmetries that are consistent with zero at the current precision.

July, 2021

Summary

- We present the most precise measurement of Collins asymmetry for charged hadrons inside jets at 200 GeV pp collisions to date;
 - The measured asymmetries for charged pions are larger than the theoretical calculations which may indicate larger quark transversity;
 - The measured asymmetries for charged kaons are statistically limited, need further measurement to confirm the difference due to the fragmentations;
- There is also an ongoing analysis using 510 GeV p+p dataset from 2017 (~320 pb^{-1}), which will provide precise measurements at lower momentum fraction region.

BackUp

Transversity

Nucleon Structure:

A complete understanding of nucleon structure requires knowledge of

- Unpolarized PDF, f(x);
- Helicity PDF, $\Delta f(x)$;
- Transversity, $h_1(x)$;
 - Quark polarization along spin of a transversely polarized proton;
 - Chiral odd, so it requires another chiral odd distribution:
 - Collins fragmentation function;
 - Transverse spin transfer to lambda (Λ);
 - Interference fragmentation function (IFF).

Jet Reconstruction

Anti-K_T Algorithm:

- Radius = 0.6;
- Less sensitive to underlying event and pile-up effects;
- Used in both data and simulation;

Simulation: PYTHIA 6.4 with STAR adjustment of Perugia 2012;

Three Simulation Levels :

- Parton hard scattered partons involved in 2->2 hard scattering event from Pythia;
- Particle partons propagate and hadronize into stable and color-neutral particles;
- Detector detector response to the stable particles.

16

Underlying Event and Particle Identification

STAR, Phys. Rev. D 100, 052005 (2019)

- Particle jet p_T values are corrected for underlying event activity measured using the off-axis cone method;
- Spin asymmetries are corrected for the dilution from the underlying event contribution;
- Good particle identification from TPC and TOF.

