⁴ He Production in $\sqrt{s_{NN}} = 3$ GeV Au+Au Collisions

Fengyi Zhao (for the STAR Collaboration)

Institute of Modern Physics, Chinese Academy of Sciences

University of Chinese Academy of Sciences

1 Abstract

10

11

Hypernuclei, bound states of nuclei with one or more hyperons, serve as a natural laboratory to investigate the hyperon-nucleon interaction. Low energy heavy-ion collisions, creating high-baryon density conditions, provide a unique opportunity to study the production mechanism of hypernuclei. Comparison of $^4_\Lambda {\rm He}$ yield with its isobar $^4_\Lambda {\rm H}$ sheds light on the hyperon-nucleon interactions under finite pressure.

In this talk, we will present the first results on the $^4_\Lambda \rm{He}$ differential yield as a function of rapidity and transverse momentum. These results are from the data recorded by the STAR experiment with fixed-target Au+Au collisions at $\sqrt{s_{NN}}=3$ GeV. The differential yield of $^4_\Lambda \rm{He}$ will be compared to that of $^4_\Lambda \rm{Hi}$ in 0-50% central collisions at the same energy. The results will be compared to different model calculations and the relevant physics implications will be discussed.