

Measurement of transverse polarization of Λ within jet in pp collisions at $\sqrt{s} = 200 \text{ GeV}$

Taoya Gao(高涛亚) for the STAR collaboration Shandong University(山东大学)

Abstract

Spontaneous polarization of Λ was observed in 1976 and still puzzles us. Polarizing Fragmentation Functions (pFFs), which describe unpolarized parton fragmenting into a polarized hadron, might be a possible origin of the spontaneous polarization. Recently, a significant transverse polarization of Λ was observed by the Belle experiment in unpolarized e^+e^- annihilation.

In pp collisions at RHIC, transverse polarization of Λ in jet can access pFFs at different energy scales and test their universality. In this poster, we present the first measurement of transverse polarization of Λ in jet as functions of z, j_T , in unpolarized pp collision at \sqrt{s} = 200 GeV with an integral luminosity of 104 pb^{-1} .

Motivation

- Self analyzing weak decay makes Λ an ideal final state polarimetry
- Λ spontaneous polarization first observed in 1976 G.Bunce et al. PRL 36, 1113 (1976)

Reconstruction of Λ and jet

 Contribution from hard-scattering ~0, other possible sources:

Initial state contribution: **Boer-Mulders function**

Polarizing Fragmentation Functions(pFFs) Boer et al, PLB 671, 91-98 (2008) Kang, Lee, Zhao, PLB 809, 135756 (2020)

Final state contribution:

STAR detector

The STAR experiments is located at the RHIC

 $\mathbf{s} = \mathbf{p}_{jet} \times \mathbf{p}_{\Lambda}$

- pFFs can be accessed by transverse polarization of Λ -in-jet in pp collisions
- Cover a wide range of jet p_T : 5~50 GeV/c for measurement of energy scale dependence
- Test universality of pFFs
- Λ polarization extraction function

$$\frac{dN}{d\cos\theta^*} \propto A_{\cos\theta^*}(1+\alpha P\cos\theta^*)$$

- A: detector acceptance function
- α : decay parameter(0.732 \pm 0.014)
- *P*: Λ polarization

 Λ rest frame

 Λ spin

 θ^* : angle between p and polarized direction in Λ rest frame

Preliminary results

collider in BNL. Subdetectors used in this analysis are:

- TPC (Time Projection Chamber):
 - Tracking and particle identification
 - $-1.3 < \eta < 1.3, \phi \in [0, 2\pi]$
- Calorimeter system:
 - BEMC (Barrel Electromagnetic Calorimeter) $-1 < \eta < 1, \phi \in [0, 2\pi]$
 - EEMC (Endcap Electromagnetic Calorimeter) $1.086 < \eta < 2, \phi \in [0, 2\pi]$

$$= \frac{p_{\Lambda} \cdot p_{jet}}{|p_{jet}||p_{jet}|}$$

Z

$$j_T = \frac{p_\Lambda \times p_{jet}}{|p_{jet}|}$$

Conclusions

• The first measurement of transverse polarization of Λ within jet in pp collisions at RHIC • Providing new constraint for pFFs: energy scale dependence; universality test

Presented at QPT 2023 15. Nov. – 19. Nov. 2023 Zhuhai, Guangdong, China

