Production of D_s^{\pm} mesons in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV by STAR

Chuan Fu Central China Normal University *for the STAR Collaboration*

Outline

Motivation

Experiment setup

➢ Results

- D_s^{\pm} signal extraction
- $D_s^{\pm} p_T$ spectrum
- D_s^{\pm}/D^0 ratio

➢Summary

 $M_{c,b} >> T_{QGP}$: predominately created from initial hard scatterings, relaxation time is comparable with life of QGP.

Measurements of nuclear modification factors (R_{AA}), azimuthal anisotropies and particle yield ratios

-- Investigate the energy loss, transport and hadronization of heavy quarks in QGP.
-- Constrain diffusion coefficient D and reveal the sub-structure of the surrounding medium.

Phys.Rev. C71 (2005) 064904

- $\succ D_{s}^{\pm}: c\overline{s} (\overline{c}s)$
- Better understand the transport properties of the charm quark in QGP.
- Study hadronization process: coalescence of charm quarks together with strangeness enhancement.

Why study D_s^{\pm} ?

Ref: M. He et al., PRL 110, 112301 (2013)

Charm quark coalescence hadronization + strangeness enhancement -> D_s^{\pm}/D^0 ratio in A+A collisions predicted to show an enhancement compared to that in p+p collisions.

$$\left(\frac{D_{s}}{D^{0}}\right)_{AA} = \frac{R_{AA}(D_{s})}{R_{AA}(D^{0})} * \left(\frac{D_{s}}{D^{0}}\right)_{pp}$$

Experiment setup

- > TPC + HFT: reconstruction of tracks and momenta of charged particles (π^{\pm} , K[±]).
- > TPC + TOF: identification of charged particles.

Heavy Flavor Tracker

- Heavy Flavor Tracker (HFT, 2014-2016): four-layers of silicon detectors — two layers of MAPS pixel detectors and two outer layers of strip detectors.
- Excellent vertex resolution allows reconstruction of charm hadron decays.

How to measure D_s^{\pm} ?

Invariant mass distribution

- Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from 2014 data, about 900 M minimum bias events.
- > Rectangular Cut method from the Toolkit for MultiVariate Analysis is used to optimize separation of signal and background in D_s^{\pm} reconstruction.

$D_s^{\pm} p_T spectrum$

D_s^{\pm}/D^0 ratio

[1] G. Agakishiev et al. (STAR Collaboration), PRL 108, 072301 (2012)[2] Ref: M. He et al., PRL 110, 112301 (2013)

- ▷ D[±]_s/D⁰ ratio: large enhancement (~1.8-3.3 times) relative to PYTHIA and the average from ee/ep/pp. No clear centrality dependence.
- Strangeness enhancement^[1] + coalescence hadronization mechanism.
- TAMU model calculation^[2] with coalescence hadronization in 10-40% centrality bin shows enhancement, but lower than data.

D_s^{\pm}/D^0 ratio

- Our measurement is consistent with ALICE result^{[1][2]} on prompt D[±]_s within uncertainties.
- Data seem to favor sequential coalescence hadronization^[3].
 D[±]_s is formed earlier than D⁰.

- [1] ALICE, JHEP10 (2018) 174
- [2] ALICE, JHEP03 (2016) 082
- [3] J.Zhao, S.Shi, N.Xu, P.Zhuang, arXiv preprint arXiv:1805.10858, 2018

Summary

> D_s^{\pm} measurements at STAR in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV enabled by the HFT.

 $> D_s^{\pm}/D^0$ enhancement with respect to PYTHIA and the ee/pp/ep average :

 Coalescence hadronization play an important role for charm quark hadronization.

Our measurement seem to favor sequential coalescence hadronization.

Outlook

- 2014+2016 data, about 1.9B events.
- Boosted Decision Tree method from the Toolkit for MultiVariate Analysis is used to optimize the topological variables in D[±]_s reconstruction.
- ➢ Significance (0-80%): 25 (rectangular cuts, 2.5<p_T<8 GeV/c, 2014) --> 45 (BDT, 1.5<p_T<8 GeV/c, 2014+2016).</p>