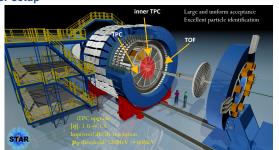


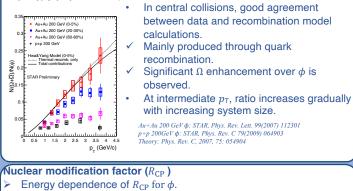
Strangeness production in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.6, 19.6, 200 GeV with STAR

Weiguang Yuan (ywg21@mails.tsinghua.edu.cn), Tsinghua University, for the STAR Collaboration

Abstract

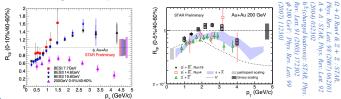

Strangeness production has been suggested as a sensitive probe to the early dynamics of the deconfined matter created in heavy-ion collisions. Benefiting from the iTPC upgrade, the strangeness measurements are now extended from mid-rapidity (|y| < 0.5, BES-I) to a larger rapidity range (|y| < 1.0, BES-II), which may help us understand the baryon stopping mechanism.

In this poster, we report new measurements of strange hadron (K_s^0 , Λ , $\overline{\Lambda}$, Ξ , $\overline{\varphi}$, ϕ) production in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.6 and 19.6 GeV from STAR BES-II and $\Omega(\overline{\Omega})$ production in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, including rapidity spectra, nuclear modification factors R_{CP} and the multistrange baryon-to-meson ratio $\Omega(sss)/\phi(ss)$.


Motivation

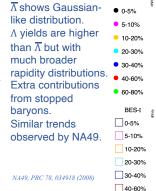
- Strangeness production is suggested as a sensitive probe to the early dynamics of the medium created.
- Strange baryon-to-meson ratio can be utilized to understand hadronization mechanism.
- Rapidity density of (anti-)strange baryons may give insight on the baryon stopping mechanism.
- $R_{CP}(\frac{[(dN/dp_T)/<N_{coll}>]_{central}}{[(dN/dp_T)/<N_{coll}>]_{peripheral}})$: Study the nuclear medium effects in the reaction process.

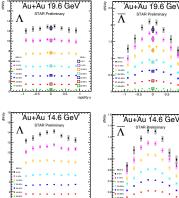
Detector setup



$\Omega(sss)/\phi(s\overline{s})$ ratio at $\sqrt{s_{NN}}$ = 200 GeV

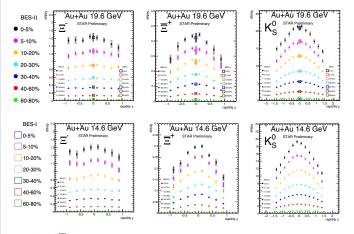
Supported in part by the U.S. DEPARTMENT OF


- $R_{\rm CP}$ < 1 for higher $p_{\rm T}$ at $\sqrt{s_{\rm NN}}$ = 200 GeV \rightarrow Partonic energy loss in the QGP medium.
- $R_{\rm CP}$ > 1 for higher $p_{\rm T}$ at $\sqrt{s_{\rm NN}}$ = 19.6 GeV and lower energies \rightarrow
- Cronin-type interactions, radial flow and/or coalescence hadronization. $R_{\rm CP}$ of strange hadrons at $\sqrt{s_{\rm NN}}$ = 200 GeV.
- $R_{\rm CP}$ of Ω follows the same trend in $p_{\rm T}$ as that of Λ and Ξ , as expected from recombination model.
- The higher R_{CP} of Ω implies the faster increase of Ω yields with the increasing centrality.



Office of

Science


Rapidity spectra of $\Lambda(\overline{\Lambda})$ at $\sqrt{s_{NN}}$ = 19.6 and 14.6 GeV BES-II

Rapidity spectra of K_s^0 , Ξ , and $\overline{\Xi}$ at $\sqrt{s_{NN}}$ = 19.6 and 14.6 GeV.

60-80%

 K_s^0 and $\overline{\Xi}$ show Gaussian-like distributions.

 Ξ yields are higher than $\overline{\Xi}$ but with much broader rapidity distributions.

Summary

- Ω measurements at $\sqrt{s_{NN}}$ = 200 GeV indicates a smooth trend in strangeness enhancement from small to large systems.
- Nuclear modification factor (R_{CP}) shows possible nuclear medium effect in the reaction process.
- Baryons have higher yields and wider rapidity distributions than their anti-baryons at $\sqrt{s_{NN}}$ = 14.6 and 19.6 GeV \rightarrow extra contributions from stopped baryons.

Outlook

Strangeness measurements from 3.2 to 14.6 GeV in BES-II will probe the onset of deconfinement.

> The STAR Collaboration https://drupal.star.bnl.gov/S TAR/presentations