

Semi-inclusive hadron+jet measurement in Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}}$ = 200 GeV with the STAR experiment

Yang He (何杨) Shandong University For the STAR Collaboration QPT Meeting July 27, 2021

Office of Science

Jet quenching in QGP

Hard probe: Jets

- Produced at early stage of the collisions
- Cross section in vacuum is calculable using pQCD

Parton energy loss in medium:

• Collisional and radiative energy losses

• Depends on traversing parton's initial energy and mass/virtuality, medium temperature and density, strong interaction coupling strength α_s , and path length, etc.

Jet measurements in Au+Au@200 GeV

- High p_T hadron triggered recoil jets and inclusive jets are measured by STAR experiment
- Strong suppression is observed in central Au+Au collisions, with a similar magnitude as at the LHC

System size dependence of jet suppression?

Study jet quenching in a smaller collision system (Zr+Zr and Ru+Ru) than Au+Au collisions using semi-inclusive h+jet measurement

Provide information of parton energy loss for different initial energy density, temperature of the medium, and smaller path length compared to Au+Au collisions

STAR detector

Time Projection Chamber (TPC):

Provides tracking for charged particles within ± 1 unit of pseudo-rapidity and covers 2π in azimuth

Year 2018 data taking for Ru+Ru and Zr+Zr at V_{NN} = 200 GeV

full production is ready and being actively worked on 13% statistics are shown in this talk

Charged particles:

 $|\eta| < 1, 0.2 < p_T < 30 \text{ GeV/}c$

Jet reconstruction:

anti- $k_{\rm T}$ algorithm, $R_{\rm jet}$ = 0.2 and 0.4, $|\eta_{\rm jet}|$ < 1 - $R_{\rm jet}$

	0-10% centrality	60-80% centrality
Current statistics for this presentation (~13%)	~124k (trigger events 7 < p _T ^{trig} < 30 GeV/c)	~14k (trigger events 7 < p _T ^{trig} < 30 GeV/ <i>c</i>)
Full statistics (ongoing)	~0.94M	~0.10M

Semi-inclusive hadron+jet to study jet quenching

• Trigger-normalized yield of jets recoiling from a high p_{T} trigger hadron

$$\frac{1}{N_{\rm trig}^{\rm AA}} \cdot \frac{d^3 N_{\rm jet}^{\rm AA}}{dp_{\rm T,jet}^{\rm ch} d\Delta \phi d\eta_{\rm jet}} \bigg|_{p_{\rm T,trig}} = \left(\frac{1}{\sigma^{\rm AA \to h+X}} \cdot \frac{d^3 \sigma^{\rm AA \to h+jet+X}}{dp_{\rm T,jet}^{\rm ch} d\Delta \phi d\eta_{\rm jet}} \right) \bigg|_{p_{\rm T,trig}}$$

• Jet yield is integrated over a recoil region in azimuth relative to the trigger hadron direction

$$Y(p_{\rm T,jet}^{\rm ch}) = \int_{3\pi/4}^{5\pi/4} d\Delta \phi \left[\frac{1}{N_{\rm trig}^{\rm AA}} \cdot \frac{d^3 N_{\rm jet}^{\rm AA}}{dp_{\rm T,jet}^{\rm ch} d\Delta \phi d\eta_{\rm jet}} \right]_{p_{\rm T,trig} > p_{\rm T,thres}}$$

• Jet quenching observable:

$$I_{\rm CP} = \left. \frac{Y(p_{\rm T,jet}^{\rm ch}) \right|_{0-10\%}}{Y(p_{\rm T,jet}^{\rm ch}) \right|_{60-80\%}}$$

Icp <1 quantifies the magnitude of the jet quenching

• Advantage: Combinatorial jets removed statistically by a mixed-event approach

h+jet p_T spectrum for jets with R = 0.2

 $7 < p_{\mathrm{T}}^{\mathrm{trig}} < 30 \ \mathrm{GeV}/c$

 $p_{T,jet}^{reco} < 0$: Almost identical between the sameevent (SE) and mixed-event (ME) jet p_T spectra

 $p_{T,jet}^{reco} > 0$: Correlated (w.r.t. trigger particles) jet contribution dominates over combinatorial jet contribution at high $p_{T,jet}^{reco}$

ME works very well for this analysis

h+jet p_T spectrum for jets with R = 0.2

 $7 < p_{\rm T}^{\rm trig} < 30 \, {\rm GeV}/c$

 $p_{T,jet}^{reco} < 0$: Almost identical between SE and ME jet p_T spectra

Combinatorial jet contribution is less in 60-80% centrality compared to 0-10% centrality

 $p_{T,jet}^{reco} > 0$: Correlated (w.r.t. trigger particles) jet contribution dominates over combinatorial jet contribution at high $p_{T,jet}^{reco}$

h+jet p_T spectrum for jets with R = 0.4

R = 0.2R = 0.4 $7 < p_{T}^{trig} < 30 \text{ GeV}/c$

 $p_{T,jet}^{reco} < 0$: Almost identical between between SE and ME jet p_T spectra Larger background fluctuation for R = 0.4 than R = 0.2

 $p_{\rm T,jet}^{\rm reco} > 0$: Correlated (w.r.t. trigger particles) jet contribution dominates over combinatorial jet contribution at high $p_{\rm T,jet}^{\rm reco}$

h+jet p_{T} spectrum for jets with R = 0.4

-0.4 R = 0.2 R = 0.4 $7 < p_{T}^{trig} < 30 \text{ GeV}/c$

 $p_{T,jet}^{reco} < 0$: Almost identical between between SE and ME jet p_T spectra

Combinatorial jet contribution is less in 60-80% centrality compared to 0-10% centrality

 $p_{T,jet}^{reco} > 0$: Correlated (w.r.t. trigger particles) jet contribution dominates over combinatorial jet contribution at high $p_{T,jet}^{reco}$

Stay tuned

We are working on full statistics for Ru+Ru and Zr+Zr collisions

- 13% statistics for this presentation
- Full statistics have a large impact for this measurement
- We expect to have a higher jet p_{T} reach
- Smaller systematic uncertainties in these data than Au+Au collisions for the 0-10% centrality

	0-10% centrality	60-80% centrality
Current statistics for this presentation (~13%)	~124k (trigger events 7 < p _T ^{trig} < 30 GeV/c)	~14k (trigger events 7 < p _T ^{trig} < 30 GeV/c)
Full statistics (ongoing)	~0.94M	~0.10M

Ongoing work: fully corrected recoil charged jet p_T spectrum and calculation of nuclear modification factor (I_{CP})

- STAR has observed strong jet suppression in central Au+Au collisions
- Ru+Ru and Zr+Zr collisions can help to study system size dependence of the parton energy loss
 - In this talk, we presented preliminary results with 13% statistics
 - ME approach for precise background removal works well
 - Work on full statistics and corrections for detector response and background fluctuation

Thank You!