The 16th International Workshop on Heavy Quarkonium at IISER Mohali

Heavy-flavor Production in p+p Collisions Measured by the STAR

Md. Nasim (For the STAR Collaboration)

Department of Physical Sciences

Indian Institute of Science Education and Research, Berhampur

Supported in part by:

Office of Science

Outline

- Introduction
- The STAR Detector
- Results
 - Heavy-flavor decay electron
 - J/ ψ Production (Charm)
 - Υ Production (Bottom)
- Summary

Heavy-Flavor Measurement in p+p

- Test of Perturbative QCD Calculations.
 - Due to their large mass heavy quarks are primarily produced in initial hard scatterings q c g c g c g c

- Production rates can be calculated by pQCD

- Baseline of Heavy-ion Measurements.
 - Heavy quarks can be used as a probe of QGP in Au+Au collisions.
 - Measurement in p+p collisions is essential to understand the effect of hot QCD medium formed in Au+Au collisions

The STAR Experiment

TPC : Tracking (momentum measurement, particle identification) ($|\eta| < 1$, $0 < \varphi < 2\pi$) **BEMC** : Triggering and identification of high- p_T electrons ($|\eta| < 1$, $0 < \varphi < 2\pi$) **MTD** : Triggering and identification of muons ($|\eta| < 0.5$, 45% in φ)

Heavy-Flavor Decay Electrons

Heavy-flavor Decay Electron

Hadronic Decay

Heavy-flavor Decay Electron

- Results are consistent with FONLL in p+p 200 GeV collisions
- Provides a precise reference for nuclear modification factor measurements in A+A

Charm vs Bottom Contribution to the NPE

Azimuthal correlations between NPE and charged hadrons has been used to separate out charm and bottom contribution

- The B decay contribution increases with p_T
- The B contribution to NPE is about 60% at high $\ensuremath{p_{\text{T}}}$

J/ψ (cc̄) Production

J/Ψ Reconstruction

 J/Ψ are reconstructed in both dimuon and di-electron decay channel

J/ψ Cross-Section

- Precise measurement of J/ Ψ cross-section up to $p_T = 20 \text{ GeV/c}$
- Low \boldsymbol{p}_{T} reach is extended through dimuon channel

Available model calculation

NRQCD : non-relativistic QCD approach

PRL 113, 192301 (2014); PRL 106, 042002 (2011)

ICEM: Improved Color Evaporation Model

Phys. Rept. 462, 125 (2008)

All models give reasonable description for the data, mainly at high $\ensuremath{p_{\text{T}}}$

J/ψ Production Vs Event Activity

- Correlation between soft and hard processes
- Stronger-than-linear growth in high mult. events
- Both PYTHIA and Percolation model explain data,
 - measurement in larger multiplicity bins is important

• Similar trend at RHIC and LHC

 J/ψ (cc̄) Production Associated with Jet

J/ψ Production Associated with Jet

Reconstructed J/ ψ in different jet activity categories (left to right: N_{iet} = 0 to N_{iet} = 2)

J/ψ Production Vs Jet Activity

- Production cross section of J/ψ as a function of jet activity (number of jets per event)
- PYTHIA fails to explain the data

J/ψ Production in Jets

- First measurement of J/ψ production in jets at RHIC
- Unlike PYTHIA, no significant z dependence observed within uncertainties for z <1
- Provide further constrain on models

Upsilon(bb) Production

Upsilon Reconstruction in p+p @ 500 GeV

 $\Upsilon -> e^+ + e^-[BR = 2.3(1S), 1.9(2S), 2.1(3S)]$

Upsilon are reconstructed in di-electron decay channel in p+p 500 GeV, more precise compared to published result in p+p 200 GeV

Upsilon cross section in p+p collisions

Y(1S+2S+3S) **STAR Preliminary** STAR √s = 200 GeV STAR √s = 500 GeV 10^{3} ☆ STAR √s = 200 GeV Published (qd) ⁰¹₀₁ (qd) ⁰¹ 10 • CFS, p+A |y| < 0.5E605, p+A ▲ CCOR, p+p ▼ R209, p+p ○ **R806**, **p+p** 10 UA1, p+p \triangle CDF, p+ \overline{p} 2 ♦ CMS, p+p NLO CEM, MRST HO, m=4.75 GeV/c², m/u=1 10-10² \sqrt{s} (GeV)^{10³}

- Spectra for Y(1S) and Y(2S+3S)
- Models agree with data reasonably well, CGC+NRQCD model seems to over predicts at low pT
- STAR results follow the world data trend
- Consistent with the Color Evaporation Model calculation

Upsilon Production Vs Event Activity

• PYTHIA, CGC model reproduce the trend in the data

 Upsilon shows similar trend like J/ψ when plotted against event activity

Outlook: More precise measurement will be available soon using runs 2017+2022 data

E. Levin, M. Siddikov, EPJC, 97(5), 376(2019);

Summary

The recent results on heavy-flavor production in p+p collisions from STAR are presented

Heavy-flavor Decay Electron :

• Measurement at 200 GeV is consistent with FONLL

J/Ψ Production:

- Precise and more differential measurement of J/Ψ cross-section.
- Current measurement along with model calculation could provide better understanding on J/Ψ production mechanism in p+p collisions

<u>Y Production:</u>

- More precise measurement at 500 GeV compared to published results at 200 GeV.
- Upsilon cross section (186± 14(stat) ± 33(sys) pb) at 500 GeV follow world data trend predicted by Color Evaporation Model.

