Quarkonium production measured by the STAR experiment

Leszek Kosarzewski, BEng, Ph.D. for the STAR collaboration

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

EPS-HEP 2019, Ghent, Belgium 12.7.2019

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Outline

• Quarkonium - a probe of quark-gluon plasma

STAR experiment

- 3 Quarkonium production in p+p at $\sqrt{s} = 200$, 500 and 510 GeV
 - $J/\psi \ p_T$ spectra
 - Υ p_T spectra
 - Event activity dependence
- Quarkonium production in p+Au
- Quarkonium production in A+A
 Low-p_T J/ψ excess
 - Suppression

6 Summary

Quarkonium - a probe of quark-gluon plasma

Quark-gluon plasma studies with quarkonium states

- QGP can be created in heavy-ion collisions and studied using quarkonium states
- Quarkonium states $J/\psi = c\bar{c}, \Upsilon = b\bar{b} \ (m_{u,d} << m_c < m_b)$:
 - · Contain heavy quarks, created at the early stages of the collision
 - Dissociate at high T in QGP via Debye-like screening [Phys.Lett.B 178(4),416-422(1986)]
 - Sequential suppression due to each state dissociating at different $T \rightarrow$ estimate of T [Phys.Rev.D 64, 094015(2001)]

Other effects

Regeneration

Comover interactions

Other modifications to quarkonium production

- Feed-down from excited states (examples):
 - $\Upsilon(nS) \to \Upsilon(1S)\pi^+\pi^-$, $\Upsilon(nS) \to \Upsilon(1S)\pi^0\pi^0$ and $\chi_{bJ} \to \gamma\Upsilon(1S)$
 - $\psi(nS) \rightarrow J/\psi \pi^+ \pi^-$, $\psi(nS) \rightarrow J/\psi \pi^0 \pi^0$ and $\chi_{cJ} \rightarrow \gamma J/\psi$
- Regeneration relevant for J/ψ at low $p_T,$ but very small for \varUpsilon at RHIC

[Phys.Rev.C 96, 054901(2017)]

- Cold Nuclear Matter effects can be studied separately in p + A or d + A collision
 - nuclear absorption
 - comover interactions very small for $\Upsilon(1S)$ [Phys.Lett.B 503, 104(2001)]
 - nuclear PDFs: shadowing, anti-shadowing

[Nucl.Phys.B (Proc.Suppl.) 214, 3-36(2011)]

[Nucl.Phys.A 926 24-33(2014)]

EPS-HEP 12.7.2019

Measure and disentangle hot and cold matter effects

Measure nuclear modification factor R_{AA} in different colliding systems. Disentangle different effects by comparing with model calculations.

STAR experiment - detectors

Quarkonium production in p+p at $\sqrt{s}=$ 200, 500 and 510 GeV

J/ψ signal in p+p at $\sqrt{s} = 200$, 500 and 510 GeV

$$J/\psi \to e^+e^- \sqrt{s} = 500 \text{ GeV}$$

$$J/\psi \to e^+e^- \sqrt{s} = 510 \text{ GeV}$$

100

2.4 2.6 2.8

3

M_{uu} [GeV/c²]

3.2 3.4 3.6 3.8

$J/\psi p_T$ spectrum at $\sqrt{s} = 200 \text{ GeV}$

- $J/\psi \rightarrow e^+e^- p_T$ spectrum vs. models
 - Data are reasonably well described by both CEM (direct J/ψ) and NLO NRQCD (prompt J/ψ) model calculations in the relevant p_T ranges
 - CGC+NRQCD (prompt $J/\psi)$ calculation above the data, but on the edge of uncertainties

EPS-HEP 12.7.2019

$J/\psi~p_T$ spectrum at $\sqrt{s}=500,510~{ m GeV}$

[arXiv:1905.06075] submitted to PRD

$J/\psi p_T$ spectrum vs. models

- Precise measurement covering a wide range of 0 $< p_T < 20~{\rm GeV/c}$
- All model calculations for prompt J/ψ , with the addition of $B \rightarrow J/\psi$ contribution based on FONLL calculation, provide a good description of data at high p_T

$\Upsilon ightarrow e^+e^-$ cross section in p+p at 200 and 500 GeV

 $\Upsilon \rightarrow e^+ e^-$ in 2011

 $\Upsilon \rightarrow e^+e^-$ in 2015 p+p $\sqrt{s} = 200 \text{ GeV}$

Integrated cross section

- $B_{ee} \frac{d\sigma}{dy}|_{|y|<0.5} = 81 \pm 5(stat) \pm 8(syst)$ pb in p+p collisions at $\sqrt{s} = 200$ GeV
- $B_{ee} \frac{d\sigma}{dy}|_{|y|<0.5} = 186 \pm 14(stat) \pm 33(syst)$ pb in p+p collisions at $\sqrt{s} = 500$ GeV
- STAR results follow the world data trend
- Consistent with the Color Evaporation Model calculation

[Phys.Rep. 462, pp.125-175(2008)]

STAR [Phys.Lett. B 735,127–137(2014)] CDF [Phys.Rev.Lett. 88,161802(2002)] CMS [Phys.Rev.D 83,112004(2010)] CFS [Phys.Rev.Lett. 39,1240-1242(1977)] CFS [Phys.Rev.Lett. 42,486–487(1978)] CFS [Phys.Rev.Lett. 42,486–487(1978)] CFS [Phys.Rev.Lett. 55,1962–1964(1985)] E605 [Phys.Rev.D 43,2815–2835(1991)] E605 [Phys.Rev.D 43,2815–2835(1991)] E605 [Phys.Rev.D 33,3516(1989)] L. Camilleri, T.B.W. Kirk, H.D.I. Abarbanel (Eds.) E606 [Phys.Rev.Lett. 89,1480–402(1979)] L. Camilleri, T.B.W. Kirk, H.D.I. Abarbanel (Eds.) E606 [Phys.Rev.Lett. 91,481–486(1980)]

- CEM calculation for inclusive Υ(1S) [Phys.Rev.C 92 034909(2015)]
 - Agree with data reasonably well
- CGC+NRQCD for direct \varUpsilon

[Phys.Rev.D 94, 014028(2016)] [Phys.Rev.Lett. 113, 192301(2014)]

• $\Upsilon(1S)$: model calculation is above the data points. Caveat: additional corrections are needed at low p_T according to authors.

Υ production vs. event activity

- Normalized $\Upsilon(1S)$ yield vs. normalized multiplicity (a measure of event activity)
- Data consistent with a linear rise(black line), with a hint for stronger-than-linear rise for $\Upsilon(1S)$ above $p_T > 4 \text{ GeV/c}$
- Similar trend at RHIC and LHC for Υ and J/ψ
 [JHEP04,103(2014)],[Nucl.and Part.Phys. Proc., 276-278, pp.261-264(2016)],[Phys.Lett.B
 712,165-175(2012)],[Phys.Lett.B 786,87-93(2018)]
- Indication of Υ production in MPI or soft particle production being suppressed by interactions of strings of color field in high- N_{ch} collisions compared to quarkonium yield [*Phys.Rev.C*, *86*, 034903(2012)]
 - Need more data to distinguish between the 2 scenarios

Quarkonium production in p+Au

$J/\psi R_{pAu}$ vs. p_T

[Comp.Phys.Comm. 198 (2016) 238-259], [Comp.Phys.Comm. 184 (2013) 2562-2570]

$J/\psi ightarrow e^+e^- \; R_{pAu}$

- Models including only nuclear PDFs are higher than the data at lower p_T
- Model which incorporates nPDF and nuclear absorption can better describe the data for $p_T < 6~{\rm GeV/c}$

Υ production in p+Au

• Indication of $\Upsilon(1S + 2S + 3S)$ suppression in p+Au collisions

Quarkonium production in A+A

J/ψ and Υ signals in A+A

J/ψ and Υ signals

- J/ψ measured in Au+Au (e^+e^- and $\mu^+\mu^-$) and U+U collisions (e^+e^-)
- $\bullet~\varUpsilon$ measured in both e^+e^- and $\mu^+\mu^-$ combined for better precision

Low- $p_T J/\psi$ excess

$J/\psi ightarrow e^+e^-$ excess in R_{AA} vs. p_T at low p_T

- $\bullet\,$ Very strong enhancement below $p_T < 0.1\,{\rm GeV/c}$
- Right plot: J/ψ yield after subtracting expected yield from hadronic interactions
 - Observed excess likely coming from coherent(mostly) and incoherent(small contribution) photoproduction
- \bullet No significant difference between Au+Au and U+U collisions

Υ RHIC vs. LHC

CMS: [Phys.Lett.B 770, 357-379(2017)]

STAR vs. CMS

- Similar suppression for $\Upsilon(1S)$, despite higher medium temperature at the LHC
 - Suppression of excited state contribution
 - Regeneration? Larger at LHC than at RHIC
 - CNM effects
- Indication of smaller suppression for $\Upsilon(2S+3S)$ at RHIC than at LHC

Υ : STAR vs. models

- Kroupaa, Rothkopf, Strickland
 - Lattice QCD-vetted potential for heavy quarks in hydrodynamic-modeled medium
 - No regeneration, no CNM effects
- De, He, Rapp
 - Quarkonium in-medium binding energy described by thermodynamic T-matrix calculations with internal energy potential (strongly bound scenario)
 - Includes both regeneration and CNM effects
- Both models agree with STAR $\Upsilon(1S)$ data
- Rothkopf's model underestimates the STAR $\Upsilon(2S+3S)$ results for 30-60% centrality

Summary

p+p collisions at $\sqrt{s}=200~{\rm GeV}$ and $\sqrt{s}=500~{\rm GeV}$

- NLO NRQCD and CEM models can reasonably describe the J/ψ and $\Upsilon(1S)$ data
- Dependence of quarkonium production on event activity.
 - Similar trends observed for J/ψ and $\Upsilon(1S)$ at RHIC and LHC.
 - Predictions from PYTHIA8 and Percolation model can qualitatively describe the trend in the data.

p+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

• Measured R_{pAu} vs. p_T for J/ψ $(R_{pAu} \approx 0.7$ for $p_T < 6 \, {
m GeV/c})$

- Nuclear absorption $\sigma_{abs} = 4.2 \text{ mb}$ in addition to nPDF favored by the data
- Indication of $\Upsilon(1S + 2S + 3S)$ suppression $R_{pAu}|_{|y| < 0.5} = 0.82 \pm 0.10(stat.)^{+0.08}_{-0.07}(syst.) \pm 0.10(glob.)$

A+A collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

- Strong excess of J/ψ production for $p_T < 0.1~{
 m GeV/c}$
 - Due to coherent and a small fraction of incoherent photoproduction
- Consistent quarkonium R_{AA} measured in dielectron and dimuon channels
 - Υ results combined for better precision
- Similar suppression of $\Upsilon(1S)$ at RHIC and LHC
- Stronger suppression of $\Upsilon(2S+3S)$ than $\Upsilon(1S)$ in central collisions
 - Sequential suppression
 - Hint of smaller suppression at RHIC than at LHC
- $\Upsilon(1S)$, $\Upsilon(2S+3S)$ R_{AA} consistent with model calculations

Thank you for your attention!

BACKUP

Multiple parton interactions (MPI)

https://www.bnl.gov/rhic/images/proton-with-gluouns-300px.jpg

http://www.desy.de/~jung/multiple-interactions/may06/mi-rick.gif

- Protons are complex objects consisting of constituent quarks, sea quarks and gluons.
- Multiple parton interactions (MPI) may happen in p + p collison implemented in PYTHIA.
 - Besides the main hard process, there may be additional hard and soft processes in MPI.
- As implemented in PYTHIA8, heavy quarks can also be produced during MPI.
- MPI together with initial- (ISR), final-state radiation (FSR) and beam remnants define the event activity, which can be characterized experimentally using the charged particle multiplicity.

[Ann.Rev.Nucl.Part.Sci.60, 463-489(2010)] [Proc.of SPIE, 100313U(2016)]

- Models particle production originating from strings of color field formed in p + p collisions.
- Soft particle production dampened by interaction of overlapping strings.
- Predicts quadratic dependence of normalized yield for particles from hard processes vs. normalized charged particle multiplicity in high multiplicity events.

$$rac{N_{hard}}{\langle N_{hard}
angle} = \langle \rho
angle \left(rac{dN_{ch}}{\langle rac{dN_{ch}}{d\eta}
angle}
ight)^2$$
 [Phys.Rev. C, 86, 034903 (2012)]

Unfolding method used for multiplicity dependent studies

- A response matrix is obtained using the PYTHIA8 event generator for both min-bias and Υ events taking into account reconstruction efficiency
- In the measured distributions are unfolded with their respective response matrices
- This procedure yields the unfolded (true) distribution

•
$$x_T = \frac{2p_T}{\sqrt{s}}, \ \sigma^{inv} \equiv E \frac{d^3\sigma}{d^3p} = \frac{F(x_T)}{p_T^{n(x_T,\sqrt{s})}} = \frac{F'(x_T)}{\sqrt{s}^{n(x_T,\sqrt{s})}}$$

[JHEP06,035(2010)]

- pQCD predicts that spectra of hard processes should follow x_T scaling check with n = 5.6 (number of partons taking active part in the process) obtained for J/ψ [*Phys.Rev.C 80, 041902(2009)*]
- No clear scaling observed, some indication for LHC data at high p_T

STAR and CMS $\Upsilon(1S)$ vs. models

[Phys.Rev.D 97,(2018)016017], [Phys.Rev.C 96,(2017)054901]

$\Upsilon(1S)$ vs. models

• Both models consistent with the data

STAR and CMS $\Upsilon(2S+3S)$ vs. models

[Phys.Rev.D 97,016017(2018)], [Phys.Rev.C 96,054901(2017)]

$\Upsilon(2S+3S)$ vs. models

Both models consistent with the data in central and semi-central collisions

[Phys.Rev.D 97,016017(2018)], [Phys.Rev.C 96,054901(2017)]

R_{AA} vs. p_T vs. models

- Both models consistent with the data
- Rothkopf's model slightly lower than $\Upsilon(2S+3S)$
- Flat vs. p_T

• Both channels consistent

STAR: [arXiv:1905.06075] submitted to PRD ICEM: [Phys.Rev.D 94, 114029(2016)]

$\psi(2S)/J/\psi$ ratio vs. models

- STAR measured ratio consistent with the results from other experiments
- ICEM model calculation describes the data trend reasonably well

Υ rapidity dependence in p+p

- STAR data slightly narrower than Color Evaporation Model (CEM) at $\sqrt{s}=200~{\rm GeV}$
- Flatter rapidity spectrum at $\sqrt{s}=500~{
 m GeV}$ compared to $\sqrt{s}=200~{
 m GeV}$
 - Dip at mid-rapidity for $\Upsilon(2S+3S)pprox 2\sigma$ level from flat
 - CEM model (inclusive) consistent with the measurement for $\Upsilon(1S)$ [Phys.Rev.C 92 034909(2015)]
 - CGC+NRQCD predictions for direct Υ(1S) are above the data for Υ(1S) [Phys.Rev.D 94, 014028(2016)],[Phys.Rev.Lett. 113, 192301(2014)]

Cross section ratios: $\Upsilon(nS)/\Upsilon(1S)$

[Phys.Rev.C 88,067901(2013)]

- \bullet TofMult: number of tracks matched to TOF within $|\eta| <$ 1, $p_T > 0.2 \, {\rm GeV/c}$
- Boxes correspond to uncorrelated systematic uncertainties (correlated uncertainties largely cancel out)
- Left plot: cross section ratios measured in 500 GeV p+p collisions are slightly below (within 2σ) world data average, shown as solid lines in the left plot.
- Right plot: No strong multiplicity dependence observed.

ΥR_{AuAu} vs. N_{part}

R_{AuAu} measured by STAR

- Consistent results from dielectron and dimuon channels
- Both results combined in order to achieve better precision
- Similar level of suppression in peripheral collisions as in p + Au
- Stronger suppression of $\Upsilon(2S+3S)$ than $\Upsilon(1S)$ in central collisions

ΥR_{AA} vs. p_T

CMS: [Phys.Lett.B 770, 357-379(2017)]

Transverse momentum dependence

- Similar suppression for $\Upsilon(1S)$ at RHIC and LHC
- Indication of stronger suppression of high- $p_T \Upsilon(2S+3S)$ at LHC than at RHIC
- Both consistent with flat dependence vs. p_T

$J/\psi R_{AA}$ in Au+Au

[[arXiv:1905.13669] submitted to PLB]

$J/\psi ightarrow \mu^+\mu^ R_{AA}$ vs. N_{part}

- Stronger suppression at RHIC than LHC for low p_T
 - Probably because of less regeneration at RHIC due to lower $c\bar{c}$ production cross section
- Less suppression at RHIC than LHC at high p_T
 - $\bullet\,$ Higher QGP temperature at LHC causes higher dissociation rate of J/ψ or excited states