# Net-Particle Cumulant Measurement from the STAR Experiment

**Risa Nishitani for the STAR Collaboration** 

#### 2021 June 8-11 RHIC/AGS Annual Users' Meeting



# Outline

#### Introduction

Higher-order fluctuations

#### Data analysis

- Particle identification
- Efficiency correction
- Centrality bin width correction

#### Results

- C<sub>4</sub>/C<sub>2</sub> for critical point search
- $C_5/C_1$  and  $C_6/C_2$  for crossover search
- Higher order fluctuations in p+p

#### Summary

## Introduction

# QCD phase diagram Quark-Gluon Plasma Temperature Critical Point First Order Hadronic Gas Baryon Chemical Potential $\mu_{B}$

STAR Collaboration, Nuclear Physics A 982, 899-902 (2019) STAR public note, https://drupal.star.bnl.gov/STAR/starnotes/public/sn0493





### **BES-I Data at STAR**

| √s <sub>NN</sub> (GeV) | Events (10 <sup>6</sup> ) | Year | μв <b>(MeV)</b> |
|------------------------|---------------------------|------|-----------------|
| 200                    | 238                       | 2010 | 25              |
| 62.4                   | 43                        | 2010 | 73              |
| 54.4                   | 550                       | 2017 | 83              |
| 39                     | 92                        | 2010 | 112             |
| 27                     | 31                        | 2011 | 156             |
| 19.6                   | 14                        | 2011 | 206             |
| 14.5                   | 14                        | 2014 | 264             |
| 11.5                   | 7                         | 2010 | 315             |
| 7.7                    | 2.2                       | 2010 | 420             |

Au+Au

p+p

| √s <sub>NN</sub> (GeV) | Events (10 <sup>6</sup> ) | Year |  |
|------------------------|---------------------------|------|--|
| 200                    | 220                       | 2012 |  |



: to map the QCD phase diagram  $25 < \mu_B(MeV) < 420$ 

### **STAR detector**

- Time Projection Chamber (TPC) : PID, Vertex
- Time Of Flight (TOF) : Extend proton PID up to  $p_T = 2 \text{ GeV/c}$



STAR, Nucl.Instrum.Meth.A 499 624-632, (2003)

### **Particle identification**

Protons and Antiprotons are identified by

- TPC for 0.4 < p<sub>T</sub> (GeV/c)< 0.8
- TPC and TOF for 0.8< pT (GeV/c)< 2.0



#### RHIC/AGS Annual Users' Meeting Risa Nishitani

#### Fluctuation = Cumulant, Moment



Skellam : Difference between two independent Possion distributions

Higher-order cumulants and ratios are sensitive to phase structure

### **Net-proton distributions**

#### **Energy dependence of net-proton distributions**



STAR Collaboration, Phys. Rev. Lett. 126, 092301 (2021) STAR Collaboration, arXiv, 2101.12413 (2021)

### **Efficiency correction**

Cumulants are corrected for detector efficiencies by assuming they follow the binomial distribution.
 M. Kitazawa, PRC.86.024904 (2012), M. Kitazawa and M. Asakawa, PRC.86.024904 (2012)

$$B_{p,N}(n) = \frac{N!}{n!(N-n)!}p^n(1-p)^n$$

• Efficiency variations on acceptance and multiplicity are taken into account.

$$C_{1} = \langle Q \rangle_{c} = \langle q_{(1,1)} \rangle_{c},$$

$$C_{2} = \langle Q^{2} \rangle_{c} = \langle q_{(1,1)}^{2} \rangle_{c} + \langle q_{(2,1)} \rangle_{c} - \langle q_{(2,2)} \rangle_{c},$$

$$C_{3} = \langle Q^{3} \rangle_{c} = \langle q_{(1,1)}^{3} \rangle_{c} + 3 \langle q_{(1,1)} q_{(2,1)} \rangle_{c} - 3 \langle q_{(1,1)} q_{(2,2)} \rangle_{c} + \langle q_{(3,1)} \rangle_{c} - 3 \langle q_{(3,2)} \rangle_{c} + 2 \langle q_{(3,3)} \rangle_{c},$$

$$C_{4} = \langle Q^{4} \rangle_{c} = \langle q_{(1,1)}^{4} \rangle_{c} + 6 \langle q_{(1,1)}^{2} q_{(2,1)} \rangle_{c} - 6 \langle q_{(1,1)}^{2} q_{(2,2)} \rangle_{c} + 4 \langle q_{(1,1)} q_{(3,1)} \rangle_{c} + 3 \langle q_{(2,2)}^{2} \rangle_{c} - 12 \langle q_{(1,1)} q_{(3,2)} \rangle_{c} + 8 \langle q_{(1,1)} q_{(3,3)} \rangle_{c} - 6 \langle q_{(2,1)} q_{(2,2)} \rangle_{c} + \langle q_{(4,1)} \rangle_{c} - 7 \langle q_{(4,2)} \rangle_{c} + 12 \langle q_{(4,3)} \rangle_{c} - 6 \langle q_{(4,4)} \rangle_{c},$$

#### **Centrality bin width correction**

• Cumulants are calculated for each multiplicity bin, and averaged for each centrality class.

$$C_n' = \frac{\sum_i w_i C_{(n,i)}}{\sum_i w_i}$$

i : Multiplicity bin

 $w_i$  : Number of event

X. Luo et al, J. Phys. G40, 105104 (2013), A. Chatterjee et al., PRC 101, 034902 (2020)

# Effects of initial volume fluctuations are suppressed in a data-driven way.

A. Bzdak and V. Koch, PRC.86.044904 (2012), PRC.91.027901 (2015),
X. Luo, PRC.91.034907 (2015)
T. Nonaka et al, PRC.94.034909 (2016), T. Nonaka, M. Kitazawa,

- S. Esumi, PRC.95.064912 (2017)
- A. Bzdak, R. Holzmann, V. Koch, PRC.94.064907 (2016)
- X. Luo, T. Nonaka, Phys. Rev. C99, 044917 (2019)

### Fourth-order fluctuations for critical point search





Non-monotonic beam energy dependence of κσ<sup>2</sup> has been observed for net-proton fluctuations

> Possible signature of critical point

STAR Collaboration, Phys. Rev. Lett. 126, 092301 (2021) STAR Collaboration, arXiv, 2101.12413 (2021)

## **BES-II Data at STAR**

|       | $\sqrt{s_{NN}}$ (GeV) | Events (10 <sup>6</sup> ) | Year | μв <b>(MeV)</b> |
|-------|-----------------------|---------------------------|------|-----------------|
| Au+Au | 27                    | 560                       | 2018 | 156             |
|       | 19.6                  | 582                       | 2019 | 206             |
|       | 14.6                  | 324                       | 2019 | 262             |
|       | 11.5                  | 235                       | 2020 | 316             |
|       | 9.2                   | 162                       | 2020 | 373             |
|       | 7.7                   | 101                       | 2021 | 420             |
|       | 3 (FXT)               | 565+                      | 2018 | 721             |

+FXT data at 9.2, 11.5, 13.7 GeV, ~50M for each

- 10 20 times larger statistics than BES-I
- Collision energies : 3 20 GeV
- μ<sub>B</sub> : 20 720 MeV

### Crossover



## Sixth-order fluctuations for crossover search

A. Bazavov et al, Phys. Rev. D 95, 054504 (2017)

HotQCD Collaboration, Phys. Rev. D 101, 074502 (2020)



STAR, arXiv : 2105.14698

- From peripheral to central collisions, the values of C<sub>6</sub>/C<sub>2</sub> change from positive to negative at 200 GeV
- Lattice QCD calculations at  $\mu_B = 0$  show negative C<sub>6</sub>/C<sub>2</sub>

## Collision energy dependence of $C_5$ and $C_6$ in Au+Au



- Weak collision energy dependence for  $C_5/C_1$  (0-40%)
- Deviation from 0 at a level of  $< 2\sigma$
- C<sub>5</sub>/C<sub>1</sub>, C<sub>6</sub>/C<sub>2</sub> (70-80%) > 0 for all energies

## **Precise measurements in p+p 200 GeV**

- Multiplicity / acceptance dependence would be available with high statistics dataset
- There is no initial volume fluctuations by construction, thus CBWC is just to take averaging.



## Multiplicity dependence of net-proton cumulants

- Cumulants increase with increasing multiplicity
- Deviations from Skellam\* and Pythia become larger for higher-order





#### **Multiplicity dependence of net-proton cumulant ratios**

- C<sub>3</sub>/C<sub>2</sub> is consistent with the Skellam expectations
- Deviations from Skellam and Pythia become larger for higher-order



#### Acceptance dependence of net-proton cumulant ratios



- Deviations from Skellam baseline become large with increase of |∆y| acceptance except for C<sub>3</sub>/C<sub>2</sub>
- C<sub>3</sub>/C<sub>2</sub> is consistent with Skellam



#### Acceptance dependence of net-proton cumulant ratios



- Deviations from Skellam baseline become large with increase of p<sub>T</sub> acceptance except for C<sub>3</sub>/C<sub>2</sub>
- C<sub>3</sub>/C<sub>2</sub> is consistent with Skellam



#### Comparison between p+p and Au+Au collisions at 200 GeV

- The results from p+p collisions fit into the centrality dependence of Au+Au collisions
- C<sub>5</sub>/C<sub>1</sub> and C<sub>6</sub>/C<sub>2</sub> > 0 for p+p collisions, while C<sub>5</sub>/C<sub>1</sub> and C<sub>6</sub>/C<sub>2</sub> < 0 for Au+Au central collisions



- Only statistical errors are shown for Au+Au results
- Efficiency is not corrected for x-axis

#### Au+Au: STAR, arXiv:2103.12413 (2021), arXiv:2105.14698 (2021)

LQCD : Phys. Rev. D 101, 074502 (2020)

## Summary

#### Au+Au

p+p

- Net-proton C<sub>4</sub>/C<sub>2</sub> shows non-monotonic beam energy dependence, which could be a signal from the critical point
- Net-proton C<sub>5</sub>/C<sub>1</sub> and C<sub>6</sub>/C<sub>2</sub> show negative values within large uncertainties at  $\sqrt{s_{NN}}$  = 200 GeV
- Multiplicity dependence of net-proton cumulant has been measured in p+p collisions at  $\sqrt{s}$  = 200 GeV
- The ratios from higher order cumulants are all positive

While the results of the ratios of  $C_5/C_1$  and  $C_6/C_2$  are all positive in 200 GeV[p+p] collisions, these ratios are progressively towards negative in more central Au+Au collisions at the same energy.

The observations are consistent with the chiral crossover transition predicted by model calculations at vanishing  $\mu_B$ .

### Backup

## Why p+p?

- As a baseline to be compared with Au+Au collisions
- Statistics is 70 times larger than previous results
- Multiplicity / acceptance dependence would be available with high statistics dataset

#### STAR Collaboration, Phys. Rev. Lett. 112, 32302 (2014)



#### **Acceptance Dependence of Net-Proton Cumulants**

 $|\Delta y|$  dependence

• Cumulants become large with increasing  $|\Delta y|$  acceptance



RHIC/AGS Annual Users' Meeting Risa Nishitani