

Strange Hadron Production in O+O Collisions at $\sqrt{s_{NN}} = 200$ GeV at STAR Iris Ponce (for the STAR Collaboration) Wright Laboratory, Yale University iris.ponce@yale.edu

Signal Region

Background Region

1) Introduction

•At high temperatures QCD matter becomes a new state of matter called the Quark-Gluon plasma (QGP). The QGP behaves as deconfined strongly coupled fluid.

•The QGP is predicted to have existed in the early universe in the first μ s after the

3) Particle Reconstruction

•Using Kalman Filter Particle (KF Particle) reconstruction algorithm will allow us to measure Λ , Ξ , Ω and K_{s}^{0} and their anti-particles.

Figure 7: Simulated anti-**Ω** decay^[5]

•The signal (without background subtraction) region is $[\mu - 3\sigma, \mu + 3\sigma]$, and the background region is [1.095 to μ -3 σ , μ +3 σ to 1.135 GeV/c²] (μ = m_A). •Fitting function: 2nd poly (for background) + double Gauss function (signal).

Big Bang.

•Strangeness enhancement was one of the first observables predicted as a signature of the QGP^[2]

ф

ΦΦ

Figure 1: The QGP phase diagram ^[1]

- •The thermal production of s-s quark pairs is favorable in the QGP since the s-s masses are
- lower than the predicted QGP temperature, with the QGP -> hadron gras transition temperature ~157 MeV. • 2 x m_s ~192 MeV
 - There are abundant thermal gluons in the QGP medium.

•A smooth increase in the ratio of strange hadron production to the pion yield as a function of multiplicity has been found in various collision systems (p+p, p+A, A+A) at TeV collision energies^[3].

Figure 9: Raw Transverse Momentum Distributions for O+O at $\sqrt{s_{NN}}$ = 200 GeV

 $p_{-} = 0.75 - 1.0 \text{ GeV/c}$

|v| < 0.9

The blue region is the signal w.o background subtraction. The green region is the background region (very small).

There is good coverage through 0 - 80% centralities for multistrange hadrons.

4) p_T Spectrum and Particle Yields

The p_T spectrum is calculated from the Λ 's invariant mass distributions in different momentum ranges.

2) STAR Detector

5) Summary and Outlook

• The O+O dataset can fill in the gaps in the low-multiplicity regions of the ratio of strange hadron production to the pion yield for the STAR data.

Figure 6: Diagram of the STAR detector ^[4]

•From 2018 on, STAR had two detector upgrades: iTPC and eTOF Improved coverage: From $|\eta| < 1.0 \implies |\eta| < 1.5$ • Lower p_T coverage: $125 \text{ MeV/c} \longrightarrow 60 \text{ MeV/c}$ • Extended PID with eTOF

Figure 5: Different collision systems at RHIC

•There are ~650M O+O minimum bias events total at $\sqrt{s_{NN}} = 200 \text{ GeV}.$ • $\frac{1}{4}$ of the O+O run was taken with the magnetic field reversed.

- Testing calibration and TPC distortions
- We presented the first yield calculation for Λ 's in the 0-10% centrality region for O+O. The O+O yield agrees with previous published STAR Λ yields at similar N_{part} values.
- Extend the analysis to other hyperons. x) The raw p_T spectra are pending the corrections.
- Use thermal model for freeze-out parameter (e.g. μ_B , T_{ch}) extraction. [1] Brookhaven National Laboratory. (2023, February 24). Clear sign that QGP production 'turns off' at low energy. [2] P. Koch, et al. Phys. Rep. 142, 167 (1986) [3] ALICE Collaboration. Nat. Phys., 13, 535 (2017) [4] Picture: Alex & Maria Schmah [5] Maksym Thesis (2016))

