Spin polarization measurements from STAR Beam Energy Scan program

Subhash Singha (For STAR Collaboration)

Quark Matter Research Center Institute of Modern Physics Chinese Academy of Sciences

Outline

- Motivation for measuring the spin polarization
- STAR detector
- Measurements from STAR (Au+Au collisions at $\sqrt{s_{NN}} = 3 200$ GeV):

Global polarization of hyperons (Λ , Ξ , Ω) Local polarization of hyperons (Λ) Global spin alignment of vector mesons (ϕ , K^{*})

• Summary and outlook

Probe initial angular momentum

In non-central heavy-ion collisions

 A large orbital angular momentum (OAM) imparted into the system

$$L \sim bA\sqrt{s_{NN}} \sim 10^4 \hbar$$

• Such a huge OAM can polarize quarks due to "spin-orbit" interaction.

Liang, et. al., Phys Rev Lett. B. 94, 102301 (2005)

Becattini, et. al., Phys Rev. C. 77, 024906 (2008)

Probe initial magnetic field

Kharzeev, Nucl Phys A803, 227 (2008)

In non-central heavy-ion collisions

- Initial strong magnetic field (**B**) is expected $eB \sim m_\pi^2 \sim 10^{18} \text{ Gauss}$
- Such strong B field can also polarize quarks.
 Can induce opposite spin polarization for particles and anti-particles due to opposite sign of magnetic moment

Through polarization measurement

- Search for signatures of L and B
- Understand the properties of QGP medium under extreme conditions (L and B)
- Provide the unique opportunity to probe the spin degrees of freedom of the QGP

STAR Detector

- Uniform acceptance, full azimuthal coverage, excellent PID capability
- <u>TPC</u>: tracking, centrality and event plane
- <u>EPD, ZDC, BBC</u>: event plane
- <u>TPC+TOF</u>: particle identification

Global spin polarization of hyperons

Dataset and analysis

Collision	Au+Au	
system		
Collision	3-200 GeV	
energy		
Particle of	Λ, Ξ, Ω	
interest		
rapidity	y < 1.0	
Background	Side bands	
Polarization axis	perpendicular to 1 st order event plane (BBC/ZDC/EPD)	

Global polarization is measured from the angular		
distributions using parity violating weak decay of		
hyperons ("self-analyzing"):		
dN 1		

$$\frac{d\mathbf{N}}{d\Omega^*} = \frac{1}{4\pi} (1 + \alpha_H \mathbf{P}_{\mathbf{H}}^* \cdot \mathbf{p}_{\mathbf{d}}^*)$$

- P_{H} : Hyperon polarization
- α_H : Hyperon decay parameter
- \boldsymbol{p}_d : Daughter momentum direction
- * : Measurements in parent's rest frame

Component perpendicular to reaction plane:

•
$$P_H = \frac{8}{\pi \alpha_H} \frac{\langle \sin(\Psi_1 - \phi_d^*) \rangle}{\operatorname{Res}(\Psi_1)}$$

 ϕ_d : Daughter azimuthal angle

 Ψ_1 : 1st order event plane

First observation of PA

Most vortical fluid created at RHIC

Hints of difference between Λ and anti- Λ

**Note: the decay parameter (α_{Λ}) has been updated and P_H is smaller by 12% BES-III: Nature 15, 631 (2019), Ireland et al, Phys Rev Lett 123, 182301 (2019)

Subhash Singha, RHIC-AGS 2021 Zyla et al, (PDG), PTEP 083C01 (2020)

8

Possible constraint on B field by PA

Global polarization is measured from the
angular distributions
•
$$P_H = \frac{8}{\pi \alpha_H} \frac{\langle \sin(\Psi_1 - \phi_d^*) \rangle}{\text{Res}(\Psi_1)}$$

• Magnetic field
 $B = \frac{T}{2\mu_\Lambda} (P_\Lambda - P_{\bar{\Lambda}})$
 $B \sim 10^{-2} m_\pi^2 \qquad \qquad \Delta P_\Lambda = 0.5\% \\ T = 160 \text{ MeV}$

Becattini, et. al., Phys Rev. C. 95, 054902 (2017)

Hints of difference between Λ and anti- Λ (Effect from initial B field ?)**

- ** Difference between Λ and anti- Λ can also be caused by
- Different freeze out for particles and anti-particles
- Different response to mesonic field generated by baryonic current

Vituik, et. al., Phys Lett. B. 803, 135298 (2020) Csernai et al, Phys Rev C, 99, 021901 (2019)

.

STAR

New measurements of P_A from lower energies

STAR: Nature 548, 62 (2017) STAR: Phys Rev C 90, 014910 (2018)

STAR Preliminary

Au+Au Collider $\sqrt{s_{\rm NN}}$ = 27, 54.4 GeV Au+Au Fixed Target $\sqrt{s_{\rm NN}}$ = 7.2 GeV

Preliminary P_{Λ} measurements follow the global trend of energy dependence

Beam energy dependence of P_{Λ}

STAR Preliminary

.

Au+Au Collider $\sqrt{s_{\rm NN}}$ = 27, 54.4 GeV Au+Au Fixed Target $\sqrt{s_{\rm NN}}$ = 7.2 GeV

ALICE Phys Rev C 101, 044611 (2020) Pb+Pb $\sqrt{s_{NN}}$ = 2.76, 5.02 TeV

HADES Preliminary, SQM 2021 Au+Au $\sqrt{s_{NN}}$ = 2.4 GeV Ag+Ag $\sqrt{s_{NN}}$ = 2.55 GeV

> <u>Theory calculations for P_{Λ} at low energies</u> Deng et. al, Phys.Rev.C 101, 064908 (2020) Ivanov, Phys.Rev.C 103, L031903 (2021) Guo et al, arXiv:2105.13481

Expected, $P_{\Lambda} \sim 0$ at $\sqrt{s_{\rm NN}} \sim 2m_{\rm N}$

- P_{Λ} follows increasing trend from 5.02 TeV down to 2.4 GeV
- Hadronic dominant matter retains more vorticity (?)
- Where do we observe the highest polarization?

η dependence of P_{Λ}

Data

 No significant y/η dependence observed within acceptance

Model

Wu et al, Phys Rev Research 1, 033058

 Rapidity dependence of P_∧ is different among various models

Centrality dependence of P_A

Central

Peripheral

Jiang et al, Phys Rev C 94, 044910 (2016)

- P_{Λ} increases from central to peripheral collisions
- Similar pattern followed from 200 GeV down to 7.2 GeV
- Trend consistent with expectation from vorticity

First measurement of P Ξ , Ω

STAR Run:23-25

	Mass (GeV/c ²)	Spin	μ _N
Λ (uds)	1.115683	1/2	0.613
Ξ (dss)	1.32171	1/2	-0.6501
Ω (sss)	1.67245	3/2	-2.02

• New $P_{\Xi,\Omega}$ measurements confirm the global nature of spin polarization

Local spin polarization of hyperons

- Local polarization is sensitive to space and time variation of vorticity and convolute with flow driven space-momentum correlation
- Focus on longitudinal polarization

Local hyperon polarization

2

P_z [%]

-1

Longitudinal polarization

Becattini, Karpenko, Phys Rev. Lett. 120, 012302 (2018)

Elliptic flow is expected to generate a longitudinal component of polarization (P_z)

 $P_z = \frac{\sigma}{\alpha_H} \langle \cos \theta_p^* \rangle$

STAR: Phys Rev Lett 123, 132301 (2019)

Sign puzzle in Pz

Many models fail to capture the trend with proper sign

• z

Other developments addressing spin puzzle: Liu et al, Phys Rev Lett 125, 062301 Becattini et al, arXiv:2103.14621

See talk by Yi Yin

3

16

STAR pT and centrality dependence of Pz: RHIC vs LHC

Sign and trend of P_z consistent between RHIC and LHC

Although global hyperon polarization (P_y) has a strong beam energy dependence, the local polarization (P_z) does not seem to depend on beam energy

STAR

Global spin alignment of vector mesons

- Can offer information on spin dynamics of QCD medium
- Complementary to hyperon spin polarization

Baryons	Mesons	
Fermions	Bosons	
Λ (uds), spin = 1/2	φ (s̄s), spin = 1	
Ξ (dss), spin = 1/2	$K^*(d\bar{s})$, spin = 1	
Ω (sss), spin = 3/2		

Global spin alignment (poo)

Collision system	Au+Au
Collision energy	11-200 GeV
Particle of interest	ф,K*
Spin (J ^P)	1-
rapidity	y < 1.0
Background	Mixed event, Rotation background
Polarization axis	perpendicular to TPC 2 nd order event plane

Global spin alignment can be measured from the angular distributions of vector mesons:

•
$$\frac{dN}{d\cos\theta^*} = N_0 ((1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta^*)$$

 ho_{00} : *00th* component of spin density matrix $heta^*$: Angle between momentum of daughter and polarization axis in parent's rest frame

$$\rho_{00} = 1/3$$

No spin alignment

$$\rho_{00} \neq 1/3$$
 spin alignment

Global spin alignment (poo)

Theoretical expectation of vector meson ρ_{00}		
Vorticity	$\rho_{00}(\omega) < 1/3$	
Magnetic field	$ ho_{00}(B) > 1/3$ Electrically neutral $ ho_{00}(B) < 1/3$ Electrically charged	
Hadronization	$ ho_{00}({ m rec}) < 1/3$ Recombination $ ho_{00}({ m frag}) > 1/3$ Fragmentation	
Mesonic field	$\rho_{00}(\phi) > 1/3$	

Expected contribution to \phi \rho_{00}

- Including vorticity and magnetic field: and coalescence $(\rho_{00}-1/3)\sim 10^{-5}~{\rm (negative)}$
- Electric field: $(\rho_{00}-1/3)\sim 10^{-5}~{\rm (positive)}$
- Fragmentation: $(\rho_{00}-1/3)\sim 10^{-5}~{\rm (positive)}$
- ϕ meson field: $(\rho_{00}-1/3)\sim 0.1 \mbox{ (positive)}$

Liang and Wang: Phys. Rev. Lett 94, 102301 (2005) Yang et. al, Phys Rev C 97, 034917 (2018) Sheng et. al. Phys Rev D 101, 096005 (2020) Sheng et. al. Phys Rev D 102, 056013 (2020)

STAR

p_T and centrality dependence of ρ_{00}

Non-trivial p_T dependence for $\phi \rho_{00}$

Clear centrality dependence of $\phi \rho_{00}$

φ meson (20-60%): $ρ_{00} > 1/3$ (STAR Preliminary) Pb+Pb 2.76 TeV, 10-50% (ALICE) K* ρ₀₀ < 1/3 with 2.6σ Φ ρ₀₀ < 1/3 with 1.9σ

ALICE: Phys Rev Lett 125, 012301 (2020)

Energy dependence of ρ_{00}

ALICE: Phys Rev Lett 125, 012301 (2020)

- Surprising large deviation of $\varphi \ \rho_{00}$
- Cannot be accommodated by conventional mechanism of polarization !
- The role of φ meson field has been identified as one possible mechanism to solve this puzzle

Summary

Hyperon spin polarization

- Observation of global nature of hyperon polarization at RHIC (P Λ, Ξ, Ω > 0 at RHIC)
- STAR preliminary measurements (down to 7.2 GeV) follow energy dependence trend
- Longitudinal polarization: sign problem with many models (Ongoing new theory developments)

Vector meson global spin alignment

- Observation of surprisingly large ϕ meson spin alignment ($\rho_{00} > 1/3$ at RHIC)
- Difficult to reconcile with conventional mechanism of hyperon polarization

Outlook

Stay tuned for many exciting results from RHIC

• High precision global and local spin polarization/alignment measurement from BES-II and FXT:
Collider:
$$\sqrt{s_{\rm NN}} = 7.7$$
, 9.1, 11.5, 14.5, 17.3 and 19.6 GeV, 200 GeV (2023-25)
Fixed Target: $\sqrt{s_{\rm NN}} = 3.0$, 3.2, 3.5, 3.9, 4.5, 5.2, 6.2, 7.2 GeV

- Difference between particle and anti-particle polarization
- Polarization at forward rapidity using STAR forward upgrade Phys Rev C 93, 064907, Phys Rev Research 1, 033058...
- Polarization at low beam energies (high baryon density matter) "Femto-nova program"

K. Fukushima et al: AAPPS Bull. 31 (2021)

• Global spin alignment of J/Ψ (existence of vector meson field)

STAR BUR 2021-2025

Toroidal vortex structure in pA collisions

M. Lisa et al: 2101.10872

STAR BUR 2021-2025

Back up slides

p_T dependence of P_A

No significant p_T dependence

First measurement of P Ξ , Ω

STAR: Phys Rev Lett 126, 162301 (2021)

Non zero polarization for P Ξ, Ω

 $P_{\Xi,\,\Omega}$ follows energy dependence trend of P_{Λ}

 P_{Ξ} , follows centrality dependence trend of P_{Λ}

Phys. Rev. Lett. **126** (2021) 162301