Probing the QCD Phase Diagram via Higher Order Netparticle Fluctuation Measurements from STAR-BES

Ashish Pandav for the STAR Collaboration National Institute of Science Education and Research, HBNI, India

In part supported by

Outline

- 1. Introduction
- 2. Observable
- 3. The STAR Experiment
- 4. Analysis
- 5. Results
- 6. Summary

2022 RHIC & AGS, AUM BES Workshop – Ashish Pandav for the STAR Collaboration

Goal: Study the phase diagram of QCD.

2022 RHIC & AGS, AUM BES Workshop - Ashish Pandav for the STAR Collaboration

Is there a critical point?

To what extent is the crossover in $T - \mu_B$ plane? Is there a first-order transition at finite μ_B ?

Goal: Study the phase diagram of QCD.

2022 RHIC & AGS, AUM BES Workshop – Ashish Pandav for the STAR Collaboration

31 / 1 2

Goal: Study the phase diagram of QCD.

Varying collision energy varies Temperature (T) and Baryon Chemical Potential (μ_B). Fluctuations in various observables are sensitive to phase transition and critical point.

Observables

□ Higher order cumulants of net-proton distributions (proxy for net-baryon).

$$\begin{array}{ll} C_1 = < N > \\ C_2 = < (\delta N)^2 > & \text{Here, } \delta N = N - < N > \\ C_3 = < (\delta N)^3 > & \\ C_4 = < (\delta N)^4 > -3 < (\delta N)^2 >^2 \\ C_5 = < (\delta N)^5 > -10 < (\delta N)^3 > < (\delta N)^2 > \\ C_6 = < (\delta N)^6 > -15 < (\delta N)^4 > < (\delta N)^2 > -10 < (\delta N)^3 >^2 + 30 < (\delta N)^2 >^3 \end{array}$$

☐ Higher order cumulants: sensitive probe for CP and the nature of phase transition.

Search for CP

Non-monotonic energy dependence of kurtosis of net-proton in presence of CP

M. A. Stephanov, Phys.Rev.Lett. 107 (2011) 052301, Y. Hatta et al, Phys.Rev.Lett. 91 (2003) 102003

2022 RHIC & AGS, AUM BES Workshop – Ashish Pandav for the STAR Collaboration

A

Observables

□ Higher order cumulants of net-proton distributions (proxy for net-baryon).

$$\begin{array}{l} C_1 = < N > \\ C_2 = < (\delta N)^2 > & \text{Here, } \delta N = N - < N > \\ C_3 = < (\delta N)^3 > & \\ C_4 = < (\delta N)^4 > -3 < (\delta N)^2 >^2 \\ C_5 = < (\delta N)^5 > -10 < (\delta N)^3 > < (\delta N)^2 > \\ C_6 = < (\delta N)^6 > -15 < (\delta N)^4 > < (\delta N)^2 > -10 < (\delta N)^3 >^2 + 30 < (\delta N)^2 >^3 \end{array}$$

☐ Higher order cumulants: sensitive probe for CP and the nature of phase transition.

M. A. Stephanov, Phys.Rev.Lett. 107 (2011) 052301, Y. Hatta et al, Phys.Rev.Lett. 91 (2003) 102003

2022 RHIC & AGS, AUM BES Workshop – Ashish Pandav for the STAR Collaboration

Search for Crossover

Goal: Identification of O(4) chiral criticality on the phase boundary.

2022 RHIC & AGS, AUM BES Workshop – Ashish Pandav for the STAR Collaboration

Search for First-order Phase Transition

Multiplicity distribution becomes bi-modal (contribution from two phases)

Proton factorial cumulants κ_n : with increasing order, increase rapidly in magnitude with alternating sign

2022 RHIC & AGS, AUM BES Workshop – Ashish Pandav for STAR the Collaboration

Analysis Procedure

1/ Event Selection

3/ Track selection and PID

5/Calculate Cumulants

7/ Correct for Centrality Bin Width Effect 2/ Centrality Selection

4/ Construct Multiplicity Distributions

6/ Correct for Efficiency

8/ Compute Statistical Errors

9/ Compute Systematic Errors

10/ Comparison with models

Dataset Details

|--|

√s _{NN} (GeV)	Events (10 ⁶)	μ _в (MeV)
200	900	20
62.4	43	73
54.4	550	83
39	92	112
27	31	156
19.6	14	206
14.5	14	264
11.5	7	315
7.7	2.2	420
3	140	750

J. Cleymans et. al, PRC. 73, 034905 (2006)

PID
DetectorTransverse Momentum
Range (pT)Rapidity
(y)TPC0.4 to 0.8 GeV/c|y| <0.5</td>TPC+TOF0.8 to 2.0 GeV/c|y| <0.5</td>

Centrality: Charge particle multiplicity excluding proton.

Goal: to map the QCD phase diagram $20 < \mu_B < 750 \text{ MeV}$

2022 RHIC & AGS, AUM BES Workshop - Ashish Pandav for the STAR Collaboration

Event-by-event Raw Net-proton Distributions

Net-proton distributions, top 5% central collisions, efficiency uncorrected.
Values of the mean increase as energy decreases, effect of baryon stopping. Larger width → larger stat. errors: err(C_r) ∝ σ^r/√N_{evts}

Analysis Techniques (Corrections and Uncertainties)

Reconstruction efficiency

□ Centrality bin width correction

$$C_n = \sum_r w_r C_{n,r}$$
 where $w_r = n_r / \sum_r n_r$, $n=1,2,3,4...$
Here, n_r is no. of events in r^{th} multiplicity bin

- □ Statistical uncertainties:
- Bootstrap method
- □ Sources of systematic uncertainties:
- Particle identification
- Background estimates (DCA)
- Track quality cuts
- Efficiency variation

X. Luo, Phys. Rev. C 91, (2015) 034907 T. Nonaka et al, Phys. Rev. C 95, (2017) 064912 X. Luo et al, J.Phys. G 40, 105104 (2013) X. Luo, J. Phys. G 39, 025008 (2012) X.Luo et al, Phys.Rev. C99 (2019) no.4, 044917 A.Pandav et al, Nucl. Phys. A 991, (2019)121608

Net-proton Cumulant Measurements

Measurements and QCD Thermodynamics

STAR: PRL 126, 092301 (2021) STAR: PRC 104, 024902 (2021) STAR: PRL 127, 262301 (2021)

Within uncertainties, experimental data consistent with predicted hierarchy.

UrQMD does not follow the ordering. Positive for all the ratios.

2022 RHIC & AGS, AUM BES Workshop – Ashish Pandav for the STAR Collaboration

Net-Proton C_4/C_2 – CP Search

Non-monotonic collision energy dependence observed.

UrQMD model fails to reproduce the observed non-monotonic dependence.

STAR: PRL 126, 092301 (2021) STAR: PRL. 128, 202303 (2022)

Net-Proton C_4/C_2 – CP Search

□ Non-monotonic collision energy Precision measurements in the range: $7.7 < \sqrt{s_{NN}} < 27$ GeV ongoing at BES-II the observed non-monotonic dependence.

2022 RHIC & AGS, AUM BES Workshop – Ashish Pandav for the STAR Collaboration

Net-Proton C_4/C_2 – CP Search

■ Non-monotonic collision energy Precision measurements in the range: $7.7 < \sqrt{s_{NN}} < 27$ GeV ongoing at BES-II the observed non-monotonic dependence.

New measurement at 3 GeV $(\mu_B=720 \text{ MeV})$

□ Consistent with UrQMD.

□ QCD matter is hadronic at 3 GeV.

□ If CP exists, it exists at $\sqrt{s_{NN}} > 3$ GeV.

Net-Proton C_4/C_2 – CP Search

2022 RHIC & AGS, AUM BES Workshop - Ashish Pandav for the STAR Collaboration

Net-Proton C_5/C_1 and C_6/C_2 – Search for Crossover

□ C₅/C₁ (0-40%) fluctuates around zero as a function of √s_{NN}. C₆/C₂ (0-40%) increasingly negative with decreasing √s_{NN} - consistent with expectation from LQCD, FRG model.
□ Peripheral data, UrQMD, HRG model calculation are positive or consistent with zero.

2022 RHIC & AGS, AUM BES Workshop – Ashish Pandav for the STAR Collaboration

Net-Proton C_5/C_1 and C_6/C_2 at 200 GeV – Search for Crossover

STAR: PRL 126, 092301 (2021), PRC 104, 024902 (2021), PRL 127, 262301 (2021)

□ Zr+Zr and Ru+Ru data follows the multiplicity trend shown by p+p and Au+Au.

□ Cumulant ratios decrease with increasing multiplicity. C_5/C_1 and C_6/C_2 from Au+Au results becomes negative: consistent with LQCD.

Proton κ_5 and κ_6 – Search for First-order Phase Transition

Average no. of participant nucleons($\langle N_{part} \rangle$)

 \Box κ_5 (0-5%) consistent with two component model expectation within uncertainties while κ_6 (0-5%) remains 1.8 σ away.

Summary and Outlook

- STAR
- □ Higher-order cumulants are important observable in the study of QCD phase structure. Sensitive to CP, crossover and first-order phase transition.
- □ Net-proton cumulant ratios seem to follow hierarchy predicted by QCD thermodynamics.
- □ Non-monotonic collision energy dependence observed for net-proton C_4/C_2 . Hint of CP in the collision energy range $7.7 \le \sqrt{s_{NN}} \le 27$ GeV. Recent data at 3 GeV suggests QCD matter is hadronic at such low energies, indicating that if critical region is created in heavy-ion collisions, it should exist at $\sqrt{s_{NN}} > 3$ GeV.
- □ Net-proton C_6/C_2 is increasingly negative with decreasing $\sqrt{s_{NN}}$. Multiplicity dependence studies at $\sqrt{s_{NN}} = 200$ GeV suggest C_6/C_2 becomes negative with increasing multiplicity. Observations are consistent with sign predicted by lattice QCD for crossover.
- □ Proton κ_n measurement at 7.7 GeV have large uncertainties. Precision measurements at low $\sqrt{s_{NN}}$ from BES-II will be interesting for the search of first-order phase transition.
- □ Measurements with high statistic BES-II data ($\sim 10 20$ times of current statistics) ongoing.

BES-II at RHIC

High statistics collected for $\sqrt{s_{NN}}$ = 7.7 – 27 GeV: Precision measurement STAR FXT: Extend precision measurements to μ_B =750 MeV Detector Upgrades: iTPC, eTOF, EPD: Enlarged phase Space coverage. Crucial for CP search.

FXT Mode

√s _{NN} (GeV)	Events (10 ⁶)	μ _B (MeV)
7.7	163	420
6.2	118	487
5.2	103	541
4.5	108	589
3.9	170	633
3.5	116	666
3.2	201	699
3.0	2361	750

Collider	Mode

√s _{NN} (GeV)	Events (10 ⁶)	μ _B (MeV)
7.7	101	420
9.2	162	355
11.5	235	315
14.5	324	264
17.3	256	230
19.6	478	206
27	555	156

STAR Internal Note: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598 T. Nonaka (for STAR Collaboration) : 3rd workshop on Physics performance studies at FAIR and NICA, 2021

2022 RHIC & AGS, AUM BES Workshop - Ashish Pandav for the STAR Collaboration

BES-II at RHIC

2022 RHIC & AGS, AUM BES Workshop - Ashish Pandav for the STAR Collaboration