RECENT TRANSVERSE SPIN RESULTS FROM THE STAR EXPERIMENT AT RHIC

Mriganka Mouli Mondal (for the STAR Collaboration) Texas A&M University

2015 RHIC & AGS Annual Users' Meeting

Outline

- Introduction
- The polarized RHIC collider and the STAR experiment
- Transverse Single Spin Asymmetries (TSSA) with forward detector, Forward Meson Spectrometer (FMS)
- TSSAs for Jets and di-hadrons
- STAR transverse physics in ongoing transverse run at $\sqrt{s} = 200 \text{ GeV}$

TSSA – two theoretical frameworks

Spin-dependent transverse momentum dependent (TMD) function S_T.(P×k_T) + Collins fragmentation functions

- Sivers function, Sivers90
- Collins function, Collins 93
- Gauge invariant definition of the TMDs: Brodsky, Hwang, Schmidt 02; Collins 02; Belitsky, Ji, Yuan 02; Boer, Mulders, Pijlman, 03
- The QCD factorization: Ji, Ma, Yuan, 04; Collins, Metz, 04

- Twist-3 quark-gluon correlations + Twist three fragmentation functions
- Efremov-Teryaev, 82, 84
- Qiu-Sterman, 91,98
- Kouvaris, Qiu, Vogelsang, Yuan, 06

Sivers vs. Collins

RHIC : the world's first and the only polarized proton collider

STAR detector in cross view

STAR at forward rapidity

- Forward Meson Spectrometer(FMS), Forward Pre-Shower Detector (FPS, we have for 2015)
- Event topology dependent of TSSA
- Measurements from 2011 transverse data at √s = 500GeV :
 - \cdots A_N for electromagnetic jets
 - \dots A_N for inclusive neutral pions

Forward ECAL in STAR

Forward Meson Spectrometer (FMS) :

-- Pb glass EM calorimeter covering 2.5< η <4.0

-- Detect π^0 , η , direct photons and jet-like events in the kinematic region where transverse spin asymmetries are known to be large.

Forward Preshower Detector in front of FMS in 2015 for direct photon detection

2015 RHIC & AGS Annual Users' Meeting

FMS+FPS (2015)

Forward Meson Spectrometer (FMS) :

-- Pb glass EM calorimeter covering 2.5< η <4.0

-- Detect π^0 , η , direct photons and jet-like events in the kinematic region where transverse spin asymmetries are known to be large.

Forward Preshower Detector in front of FMS in 2015 for direct photon detection

2015 RHIC & AGS Annual Users' Meeting

Large TSSA at forward rapidity

Inclusive $\pi 0$ production

 $p_{\uparrow} + p \longrightarrow \pi^0 + X$

$$A_N \equiv \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

$$x_F = 2p_Z/\sqrt{s}$$

♦ Rising A_N with X_F
♦ A_N nearly independent of √s
♦ No evidence of fall in A_N with increasing P_T

6/09/15

2015 RHIC & AGS Annual Users' Meeting

Event topology dependency A_N

- More isolated pions have greater A_N than those with nearby energy deposits
- Pion A_N is therefore event-topology dependent

EM-Jet characteristics

A_N vs. EM-Jet Energy

 Isolated π⁰'s have large asymmetries consistent with previous observation (CIPANP-2012 Steven Heppelmann)

https://indico.triumf.ca/contributionDisplay.pycontribId=349&sessionId=44&confId=1383

♦ Asymmetries for "jettier" (event complexity) events are much smaller

A_N for different # photons in EM-Jets

2015 RHIC & AGS Annual Users' Meeting

- 1-photon events, which include a large π⁰ contribution in this analysis, are similar to 2-photon events
- Three-photon jet-like events have a clear non-zero asymmetry, but substantially smaller than that for isolated π⁰'s

A_N for #photons >5 is similar to that #photons = 5 6/09/15

A_N with mid-rapidity activities

towers (BEMC+EEMC) : anti-k_T, R = 0.7, $p_T^{EM-Jet} > 2.0 \text{ GeV/c}$, -1.0< η^{EM-Jet} <2.0 Leading central EM-Jets : Jet with highest p_T

- Case-I : having no central jet
- Case-II : having a central jet

6/09/15 15

$\Delta \Phi \ correlations \ between \ forward \ and \ central \\ EM-Jets \\ {\sf Number of \ photons \ for \ forward \ EMJets \ :} }$

♦ For higher EMJets energy, correlation grows stronger

2015 RHIC & AGS Annual Users' Meeting

A_{N} for **correlated central jets** and **no central jet** cases

 \Rightarrow Asymmetries for the forward isolated π^0 are low when there is a correlated away-side jet.

2015 RHIC & AGS Annual Users' Meeting

Asymmetries for π^0

• Isolated π^0 tend to have significantly larger asymmetries than π^0 associated with jet activities in the vicinity.

Collins asymmetries for π^0 relative to jet axis

• Total of Sivers and Collins asymmetries of EMjet and π^0 relative to jet axis are found to be insufficient to account for the observed inclusive π^0 single spin asymmetries.

Findings from forward rapidity

- \diamond Jets with isolated π^0 have large asymmetry.
- \diamond A_N decreases as the event complexity increases(i.e., the "jettiness")
- $\diamond\,$ Isolated π^{0} asymmetries are smaller when there is a correlated EM-jet at mid-rapidity.
- ↔ Both of these dependences raise serious question about how much of the large forward π⁰ A_N comes from 2 → 2 parton scattering (diffractive events?).
- Total of Sivers and Collins asymmetries of EMjet and π⁰ relative to jet axis are found to be insufficient to account for the observed inclusive π⁰ single spin asymmetries.

STAR at central rapidity

• Asymmetric distributions of di-hadrons (π^+ and π^-)

coupling **transversity** to the so-called "interference fragmentation function" (IFF) in the framework of collinear factorization

• Collins Asymmetry from Jets

coupling **transversity** to the transverse-momentum-dependent (TMD) Collins FF

2011

- 25 pb⁻¹ at $\sqrt{s} = 500$ GeV
- Average polarization = 53%

2012

- 22 pb⁻¹ at $\sqrt{s} = 200$ GeV
- Avg polarization = 63%

9/15 22

Asymmetry with m_{inv} and p_T for π^+ and π^- pairs

- Significant di-hadron asymmetries both at √s=200GeV and √s=500GeV
- Increasing with p_T
- Enhancement to asymmetry is seen around ρ mass

20 pb⁻¹ transversely polarized p+p collisions at $\sqrt{s} = 200 \text{ GeV}$ Average event weighted polarization: 63% Anti-k_T (R = 0.6) jet reconstruction $|\eta_{jet}| < 1$ Jet p_T > 10 GeV/c (x_T > 0.1) reduces gluon contamination $\Delta R_{min} > 0.1$

The first statistically significant non-zero Collins asymmetries in pp collisions

2015 RHIC & AGS Annual Users' Meeting

200 vs. 500 GeV Comparison

- These measurements coupled with the interference fragmentation function (IFF) measurements at both 200 and 500 GeV will provide insight into the Q² evolution and universality of TMD functions.
- These results could lend sensitivity to the size of potential factorizationbreaking in Collins in p+p.

2015 RHIC & AGS Annual Users' Meeting

Projections till year 2017

- These measurements coupled with the interference fragmentation function (IFF) measurements at both 200 and 500 GeV will provide insight into the Q² evolution and universality of TMD functions.
- These results could lend sensitivity to the size of potential factorizationbreaking in Collins in p+p.

2015 RHIC & AGS Annual Users' Meeting

2015 Rich Transverse physics data with STAR forward upgrades

2015 RHIC & AGS Annual Users' Meeting

STAR future measurements

Observable without fragmentation func. : Drell-Yan, W[±] /Z, jets, direct photons

Sivers_{DIS} = - Sivers (DY or W or Z)

6/09/15

measurements γ_{direct} measurements as a test of twist-3 framework

STSAs in nuclear medium

understand the underlying subprocess leading the big forward SSA in transverse polarized p+p

STAR forward goals for data taking on 2015

- Direct Photon x-section & A_N at pT>2.0GeV (FMS + Pre-shower)
- PiO A_N Jetty vs Isolated :

pp vs pA(p+Au, p+Al), diffractive vs non-diffractive (**Roman Pots**)

Study di-electron channel (J/psi) towards DY

Summary

- STAR measurements play an important role in understanding nucleon spin structure.
- TSSA for $\pi^{0's}$ and EMJets at forward rapidity for $\sqrt{s} = 500$ GeV shed light to the origin of large transverse asymmetry
- **IFF measurements** show high asymmetry for π^+ and π^- pairs and an **enhancement at** ρ **mass region**.
- **First Measurement of Transversity** in p+p : consistent with x_T scaling from 200 to 500 GeV.
- Data for 2015 moving toward A_N measurement of direct photons and DY at forward rapidity.
- Collisions p+p+ and p++Au and p++Al would provide new insight in understanding the underlying sub-process leading the big forward SSA in transverse polarized p+p.

STAR detector in cross view

Collins-like Asymmetries at $\sqrt{s} = 500$ GeV

Present data sit well below maximized contribution of ~2% at low z *Present data should provide first constraints on Collins-like effect* (sensitive to linearly polarized gluons)

2015 RHIC & AGS Annual Users' Meeting