

Summary and Outlook :

- > STAR's new result from the 2017 data set precisely measures the di-pion azimuthal correlation asymmetry A_{UT} at $\sqrt{s} = 510$ GeV.
- $> A_{UT}$ is larger for $\eta^{\pi^+\pi^-} > 0$ due to higher x (where $h_1^q(x)$ is sizable) whereas A_{UT} is smaller in $\eta^{\pi^+\pi^-} < 0$ due to low-x.
- \succ Interference between the different $\pi^+\pi^-$ production channels causes a strong A_{UT} signal around ρ meson mass (~ 0.8 GeV/ c^2).
- $\succ A_{UT}$ signal increases linearly with $p_T^{\pi^+\pi^-}$.
- > This result, together with precise unpolarized di-pion cross-section measurement, will help improve our current understanding of transversity.
- \succ Results of this analysis will help in probing transversity at much higher Q^2 than SIDIS and test the universality of the mechanism which produces azimuthal correlations amongst SIDIS, e^+e^- , and $p^{\mathsf{T}}p$ collisions.

- $\succ A_{UT}$ increases linearly with $p_T^{\pi^+\pi^-}$
- > Stronger rise in A_{UT} around ρ mass region.

