

Overview of Open Heavy Flavor and Quarkonia Physics at STAR

Kaifeng Shen (for the STAR collaboration)

University of Science and Technology of China

(skfwyl@ustc.edu.cn)

2025 RHIC/AGS Annual Users' Meeting

20 May 2025

Office of Science

Experimental Probes for Deconfinement

Open Heavy Flavor Physics at STAR

Quarkonia Physics at STAR

D Summary and Outlooks

Experimental Probes for Deconfinement

Heavy quarks mainly produced from initial hard partonic scattering, $m_{c,b} > \Lambda_{\text{QCD}}$

Heavy-flavour as probes of the QGP

Experience the entire evolution of the QPG, loss energy through Gluon radiation or Collisional energy loss

The $Q\overline{Q}$ pair bound state can be dissociated or regenerated in the QGP

Credit: Boris Hippolyte & Qian Yang

The Solenoid Tracker At RHIC

✓ BEMC: Triggering, E₀/p, high p_T electron identification
 ✓ TOF: Time of flight, particle identification
 ✓ TPC: Tracking, momentum and particle identification(dE/dx)

Presented collision system:

- Au+Au at $\sqrt{s_{NN}} = 14.6-200 \text{ GeV}$
- Ru+Ru & Zr+Zr at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- $p+p \text{ at } \sqrt{s} = 500 \text{ GeV}$

Kinematic acceptance:

- $p_{\rm T} > 0.2 ~{\rm GeV/c}$
- $|\eta| < 1$

Open Heavy Flavor Physics at STAR

D⁰ meson measured in different collision systems

- D⁰ meson has been measured in isobaric collisions, and the N.R. scaling applied to the Au+Au data
- D⁰ yield follows N_{coll} scaling within uncertainties between Zr+Zr, Ru+Ru and Au+Au collisions at 200 GeV

STAR

D⁰ meson: energy loss in QGP

- **D** D⁰ meson R_{AA} is significantly suppressed at high- p_T in central collisions
- □ More suppression towards central collisions
- Similar suppression is observed between isobar and Au+Au collisions at same centrality class
- Consistent with model calculations based on radiative and collisional energy loss

Model calculation: G. Qin, private communication

$D^0-\overline{D^0}$ meson: azimuthal correlations

→ Weaker correlation is expected in heavy ion collisions compared to that in p+p collisions at $\Delta \phi \approx \pi$, due to energy loss and thermalization in QGP

X. Zhu, et al., Phys. Lett. B 647 (2007) 366

□ No azimuthal correlation is seen within current large uncertainties

STAR

$D^0-\pi^{\pm}$ femtoscopic correlations

> The final state interaction(FSI) measured in femtoscopic CFs

M. Albaladejo, et al., Phys. Rev. D 108 (2023) 014020

Quarkonia Physics at STAR

⁽STAR) Phys. Lett. B 771 (2017) 13-20

■ Measurement J/ψ suppression at different collision energies → understand collision energy dependence of QGP property

Beam Energy Scan II at STAR: Unique opportunity to study the collision energy dependence, 10-20 times higher statistics than BES- I

J/ ψ suppression measured at different energies

X. Zhao and R. Rapp, Phys. Rev. C 82 (2010) 064905 (private communication)

■ No significant energy dependence of nuclear modification factor within uncertainties at $\sqrt{S_{NN}} \le 200 \text{ GeV}$

(NA50) Phys. Lett. B 477 (2000) 28 (ALICE) Phys. Lett. B 734 (2014) 314 (STAR) Phys. Lett. B 771 (2017) 13-20 (STAR) Phys. Lett. B 797 (2019) 134917 (ALICE) PLB 849 (2024) 138451 FAR

J/ ψ suppression measured at different systems

STAR

▶ The size of hot and dense medium → the corresponding J/ ψ suppression

□ In isobaric collisions, highest precision measurement at RHIC to date

D No significant collision system dependence of J/ψ suppression at similar $\langle N_{part} \rangle$ range

Charmonium sequential suppression

> The suppression level related to the binding energy of charmonium

 \Box First observation of charmonium sequential suppression in heavy ion collisions at RHIC (3.5 σ)

$\psi(2s)$ over J/ ψ ratio vs centrality and p_{T}

Centrality dependence trend at RHIC seems more similar to that at SPS than at LHC

□ Significantly lower than that in p+p and p+A collisions at p_T <2 GeV/c

STAR

$\boldsymbol{\Upsilon}$ suppression at different systems

Smaller regeneration effect compared to charmonia

Consistent suppression is observed
 between isobar and Au+Au collisions in
 similar $\langle N_{part} \rangle$ range

Hint of sequential suppression in isobaric collisions

⁽STAR) Phys. Rev. Lett. 130 (2023) 112301

J/ ψv_2 in isobaric collisions at RHIC top energy

■ No significant J/ ψv_2 signal is observed under current uncertainties in isobaric collisions

Smaller regeneration effect at RHIC compared to that at LHC ?

J/ ψ polarization in isobaric collisions

- > J/ ψ polarization → the production mechanism
- Possible difference between heavy ion collisions and p+p collisions
- > The J/ ψ decayed leptons: w(cos θ , ϕ) $\propto 1 + \lambda_{\theta} cos^2 \theta + \lambda_{\phi} sin^2 \theta cos^2 \phi + \lambda_{\theta\phi} sin^2 \theta cos\phi$

 $\square \ \lambda_{\theta} \text{ and } \lambda_{\phi} \text{ are consistent with zero within}$ uncertainties, indicate that no polarization is observed within current uncertainties

No significant centrality dependence is observed

J/ ψ global spin alignment in isobaric collisions

STA I

Respect to the Event Plane: axis orthogonal to reaction plane

D The ρ_{00} at RHIC is lower than 1/3 (3.5 σ), and comparable to LHC results

J/ ψ energy correlator

$$\Sigma(\cos\chi) = \int d\sigma \sum_{i} \frac{E_{i}}{M} \delta(\cos\chi - \cos\theta_{i}),$$

Phys. Rev. L 133, 191901 (2024)

□ J/ ψ as a tagged meson, sensitive to hadronization of $c\bar{c} \rightarrow J/\psi + X$

- \Box χ is measured in the J/ ψ rest frame:
 - Perturbative processes contribution
 dominate at cos(χ) < 0
 - Non-perturbative processes contribution dominate at $cos(\chi) \ge 0$

■ The J/ ψ energy correlator has been measured firstly at STAR in p+p collisions at $\sqrt{s} = 500$ GeV

■ No significant $cos(\chi)$ dependence of the J/ ψ energy correlator at $cos(\chi) > 0$, while the measurement is different compared to that in Pythia8 (~7 σ)

Coherent J/ ψ photoproduction

Transverse EM fields can be equal to a flux of quasi-real photon ($\propto Z^2$, and $q^2 < (\hbar/R_A)$)

□ These photons are linearly polarized

Coherent: J/ψ production at low p_T^2 (≤ 0.02 (GeV/c)²), while both nuclei stay intact

□ Insightful probe of initial state of nucleus

Coherent J/ ψ photoproduction in isobar UPCs

- Data ~20% lower than STARlight (with nucleon shadowing)
- □ Data ~30% lower than IA, strongly suppressed

■ The J/ ψ A_{2 ϕ} changes from negative to positive with increasing $p_{\rm T}$

STAR

Coherent J/ ψ decay anisotropy in isobar PCs

X. Wu, et al., Phys. Rev. Res. 4, L042048 (2022)

 The evidence of decay anisotropy from photon polarization aligned with impact parameter

D Open heavy flavor:

- > Energy loss: similarity of D^0 in isobar and Au+Au collision
- > Final state interaction: no clear azimuthal correlation and $D^0-\pi^{\pm}$ femtoscopic correlations

Quarkonia:

- Collision energy and system dependence: no significant dependence has been observed; first measured charmonium sequential suppression in heavy ion collisions at RHIC
- > Polarization and spin alignment in heavy-ion collisions: J/ψ polarization around zero, ρ_{00} at RHIC is lower than 1/3 (3.5 σ)
- > Hadronization process: first measured J/ ψ energy correlator in p+p collisions
- > Photo-nuclear production: coherent J/ ψ strongly suppressed; evidence of decay anisotropy

Summary and Outlook

□ Run23-25: large samples of p+p, (p+Au), and Au+Au collisions

D STAR forward upgrade(2.5< $|\eta|$ <4): Forward Tracking System & Forward Calorimeter System

STAR BUR Run25 2024

Zhen Wang@QM2023

 $2.5 < \eta < 4$

Summary and Outlook

□ Run23-25: large samples of p+p, (p+Au), and Au+Au collisions

D STAR forward upgrade(2.5< $|\eta|$ <4): Forward Tracking System & Forward Calorimeter System

 $2.5 < \eta < 4$

Zhen Wang@QM2023

STAR BUR Run25 2024

Back up

 $b/c \rightarrow e$: energy loss in QGP

- The b/c-decay electron R_{AA} are suppressed at high- p_T in Au+Au collisions at 200 GeV
- The b-decay electron R_{AA} are systematically larger than c-decay R_{AA} , consistent with mass hierarchy of parton energy loss
- Consistent with model calculations including mass-dependent energy loss mechanisms

(STAR) EPJC 82 (2022) 1150 Duke: Phys. Rev. C 92, 024907 (2015) PHSD: Phys. Rev. C 78, 034919 (2008), Nucl. Phys. A 831, 215 (2009)

- The e^{HF} have non-zero and comparable v_2 in Au+Au collisions at 54.4 and 200 GeV \rightarrow indicates that charm quarks interact strongly with the QGP medium
- □ The $e^{\text{HF}} v_2$ at 27 GeV Au+Au collisions are consistent with zero
- The e^{HF} v₂ at 54.4 GeV Au+Au collisions are Consistent with model calculations, which assume that elastic collision scattering dominated

(STAR) Phys. Lett. B 844 (2023) 138071 TAMU: Phys. Rev. C 91,024904 (2015). PHSD: Phys. Rev.C 92, 014910 (2015), Phys. Rev. C 96,014905 (2017)

STAR