Supported in part by

Jets at STAR

Andrew Tamis (Yale University)

For the STAR Collaboration

5/21/25

RHIC 25: A quarter century of discovery May 20-23, 2025

Jet Measurement at STAR

- Time Projection Chamber (TPC)
 - Charged track angular information and momentum -> PID
- Barrel Electromagnetic Calorimeter (BEMC)
 - Neutral energy deposits
- Heavy Flavor Tracker (HFT)
 - Displaced decay vertices
- Time of Flight (TOF)
 - PID
- Allows for measurement of full jet momentum and charged substructure

- STAR has collected data from a wide variety of collision systems
- Studying jets across all them provides vital information about behavior in and outside of the QGP, as well as of its onset

- STAR has collected data from a wide variety of collision systems
- Studying jets across all them provides vital information about behavior in and outside of the QGP, as well as of its onset

Vacuum

- STAR has collected data from a wide variety of collision systems
- Studying jets across all them provides vital information about behavior in and outside of the QGP, as well as of its onset

- STAR has collected data from a wide variety of collision systems
- Studying jets across all them provides vital information about behavior in and outside of the QGP, as well as of its onset

Jets in p+p

- Jets are proxies for hard-scattered partons
- Clustered from final state particles using a jet finding algorithm
- In vacuum, substructure analyses further understanding of both perturbative and non-perturbative physics

Inclusive Jet Spectra

- First jet spectrum measurement using anti- k_T jet algorithm at STAR at both \sqrt{s} = 200 GeV and 500 GeV
- An off-axis cone method is applied to correct the underlying event contribution

Hadronization in p+p

 Charged EEC and r_c probe hadronization via charge conservation

Like – Opposite

Like + *Opposite*

Infinite bath

of charges

Randomly-

sampled jet

particles

Figure: Mriganka Mouli Mondal

string

ū

Combine charge-neutral pair : \overline{d} and d

π

π

Charge-neutral pair

: \boldsymbol{u} and $\overline{\boldsymbol{u}}$

"alternating" picture :

Partonic final state

 $N_{CC} = \mathbf{0}$

 $r_{c} = -1$

RHIC/AGS Users' Meeting - Tamis

correlation

Perfect

 Both overall production and substructure serve as excellent probes of the medium

Baryon/Meson Ratio

- Is jet hadrochemistry modified by QGP?
 - Coalescence
 hadronization
 - Jet wake
- No baryon enhancement observed over momentum range scanned, except hint at ΔR = 0.15

Au

3

3.5

STAR Preliminary

p/π

0.8

0.6

0.4

0.2

2.5

Gabe Dale-Gau: QM2025 **AMPT** $f_{d} = \int_{0}^{0} \int_{0}$

Generalized Angularities: Girth

- Generalized angularities, an adjustable subset of substructure observables
- Girth allows study of jet broadening in medium
- No change resolved, work being done to reduce uncertainties and create p+p baseline

Charm Jets in Heavy Ion

- Two Competing effects:
- Large R increases gluon fraction, resulting in more quenching, but also recovers more energy
- Neither effect dominates

- Suppression of hard fragmented D₀ -> Medium induced radiation
- No observed radial dependence

- Asymmetry in bulk production will cause jets to experience different path lengths in medium
- Probe of path-length dependent quenching
- Clear signal observed in Au+Au
- Event-Shape engineering will allow for finer tuning of pathlength dependence

Semi-Inclusive Jet Measurements in Au+Au and Isobar

- Back-scattered charged hadron or photon gives us reference for hard scattering
- In systems where we know there is QGP, gives additional parameters to study quenching in reference to

Medium-Induced Acoplanarity

- Significant R-dependent acoplanarity observed in Au+Au
- Most likely due to medium/wake response

 $\tilde{\mathbf{Y}}_{\Delta\phi}(\mathbf{p}_{T, jet}^{reco, ch}) = \mathbf{Y}_{SE}(\mathbf{p}_{T, jet}^{reco, ch}) - \mathbf{Y}_{MEnorm}(\mathbf{p}_{T, jet}^{reco, ch})$ $\tilde{Y}_{\Delta\phi}(p_{T, jet}^{reco, ch}) : \text{Normalised ME subtracted jet distributions}$ $Y_{SE}(p_{T, jet}^{reco, ch}) : \text{Recoil jet distributions of Same Event (SE)}$ $Y_{MEnorm}(p_{T, jet}^{reco, ch}) : \text{Normalised ME distributions}$

STAR: ArXiv: 2505.05789

Semi-Inclusive Jet Modification

STAR: ArXiv: 2309.00145

STAR: ArXiv: 2309.00156

- Accepted for PRC and PRL
- Suppression of small R relative to large R, suggests inmedium broadening

Semi-Inclusive Hadron+Jet in Isobar (Zr+Zr and Ru+Ru) Collisions

2.5

- Extends measurement to Isobar collisions at higher jet momentum
- In-medium broadening of shower persists to smaller system
- Trigger bias causes $I_{cp} > 1$ for high $p_{T,iet}^{ch}$

Small Systems

 Small systems have shown signs of collectivity, but do they exhibit jet quenching?

Quenching Disfavored in p+Au

- Supression seen in high event activity p+Au events, but quenching disfavored as explanation
- Potentially due to $EA-Q^2$ anti-correlation

YEARS

- Charged hadron R_{AA} consistent with unity at large momentum

- Charged hadron R_{AA} consistent with unity at large momentum
- In multiple centrality ranges
- Work is being done on p+p baseline for jet R_{AA} comparison

R_{cp} for hadrons and jets

- Signs of suppression for high $p_{\rm T}$ jets in central O+O collisions
- Effects other than quenching may be present
 - Early-time dynamics
 - EA- Q^2 anti-correlation
 - α -clustering

FECal

FHCal

EPD

sTGC

Many Exciting Analyses on the Horizon!

iTPC

- Further jet substructure studies in p+p and heavy-ion
- Energy Correlators in heavy-ion
- Improved Jet Measurements from Run 22 onward with STAR upgrades
- Jet spectra and substructure in p+Au
- Further O+O analyses