

Measurement of longitudinal decorrelation of anisotropic flow v₂ and v₃ in 200 GeV Au+Au collisions at STAR

Maowu Nie (For the STAR Collaboration) Shandong University

June 4-7, 2019

2019 RHIC & AGS Annual Users' Meeting

A little bang

$$\frac{dN}{d\phi} \sim 1 + 2\sum_{n=1} v_n \cos\left(n(\phi - \Phi_n)\right)$$

$$v_n = \langle \cos(n(\phi - \Phi_n)) \rangle, \quad \boldsymbol{v}_n = v_n e^{in\Phi_n}$$

Many little bangs

Joint p.d.f. of v_n and Φ_n

$$p(v_n,v_m,...,\Phi_n,\Phi_m,...) = rac{1}{N_{
m evts}} rac{dN_{
m evts}}{dv_n dv_m...d\Phi_n d\Phi_m...}$$

Flow observables

J.Jia, arxiv: 1407.6057

		,
	pdfs	cumulants
Flow- amplitudes	$p(v_n)$	$v_n\{2k\},\ k=1,2,$
	$p(v_n,v_m)$	$\langle v_n^2 v_m^2 \rangle - \langle v_n^2 \rangle \langle v_m^2 \rangle, \ n \neq m$
	$p(v_n,v_m,v_l)$	
		Obtained recursively as above
EP- correlation	$p(\Phi_n,\Phi_m,)$	$egin{aligned} \langle v_n^{ c_n }v_m^{ c_m }\cos(c_nn\Phi_n+c_mm\Phi_m+) angle\ \sum_k kc_k=0 \end{aligned}$
Mixed- correlation	$p(v_l,\Phi_n,\Phi_m,)$	$ \langle v_l^2 v_n^{ c_n } v_m^{ c_m } \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle - \langle v_l^2 \rangle \langle v_n^{ c_n } v_m^{ c_m } \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) $
		$\sum_{k} k c_{k} = 0, n \neq m \neq l$

Transverse dynamics has been well explored both in experiments and theory

Longitudinal dynamics hasn't been fully explored yet

$$\boldsymbol{v}_n(\boldsymbol{\eta}) = v_n(\boldsymbol{\eta})e^{in\Phi_n(\boldsymbol{\eta})}$$

Forward

Backward

FB magnitude asymmetry

 $v_n(\eta)$

Event plane twist/rotation

• 2-particle correlator: correlate flow \mathbf{v}_n between η_1 and η_2

$$V_{nn}(\eta_1, \eta_2) = \langle \boldsymbol{v}_n(\eta_2) \, \boldsymbol{v}_n^*(\eta_1) \rangle$$
$$= \langle v_n(\eta_1) \, v_n(\eta_2) \cos n \left(\Psi_n(\eta_1) - \Psi_n(\eta_2) \right) \rangle$$

- ✓ V_{22} decreases at large $\Delta \eta = |\eta_1 \eta_2|$
- √ V₂₂ has small variation

2-particle correlator: correlate flow \mathbf{v}_n between η_1 and η_2

$$V_{nn}\left(\eta_{1},\eta_{2}\right)=\left\langle \boldsymbol{v}_{n}\left(\eta_{2}\right)\boldsymbol{v}_{n}^{*}\left(\eta_{1}\right)\right\rangle =\left\langle v_{n}\left(\eta_{1}\right)v_{n}\left(\eta_{2}\right)\cos n\left(\Psi_{n}\left(\eta_{1}\right)-\Psi_{n}\left(\eta_{2}\right)\right)\right\rangle$$

$\mathbf{z} \langle \mathbf{v}_n(\eta_1) \rangle \langle \mathbf{v}_n(\eta_2) \rangle$ flow decorrelation

✓ The intuitive but problematic way:

$$\mathbf{q}_n(\eta) = \frac{\sum_i w_i e^{in\phi_i}}{\sum_i w_i}$$
$$= v_n(\eta) e^{in\Psi_n(\eta)}$$

$$r_n(\eta) = \frac{\langle \mathbf{q}_n(\eta) \mathbf{q}_n^*(-\eta) \rangle}{\langle \mathbf{q}_n(\eta) \rangle \langle \mathbf{q}_n(-\eta) \rangle}$$

$$\langle \mathbf{q}_n \rangle = 0$$

$$r_n(\eta) = \frac{\langle \mathbf{q}_n(\eta) \mathbf{q}_n^*(-\eta) \rangle}{\sqrt{\langle q_n^2(\eta) \rangle \langle q_n^2(-\eta) \rangle}}$$

non-flow contributions in the denominator

Factorization ratio r_n is constructed to measure flow decorrelation

$$r_n(\eta) = \frac{\langle V_n(-\eta)V_n^*(\eta_{\text{ref}})\rangle}{\langle V_n(\eta)V_n^*(\eta_{\text{ref}})\rangle}$$
 CMS PRC.92.034911

 r_n measures relative variance between $\mathbf{v}_n(-\eta)$ and $\mathbf{v}_n(\eta)$

$$r_n(\eta) = \frac{\langle V_n(-\eta)V_n^*(\eta_{\text{ref}})\rangle}{\langle V_n(-\eta)V_n^*(\eta_{\text{ref}})\rangle} = \frac{\langle v_n(-\eta)v_n(\eta_{\text{ref}})\cos n(\Psi_n(-\eta)-\Psi_n(\eta_{\text{ref}}))\rangle}{\langle v_n(-\eta)v_n(\eta_{\text{ref}})\cos n(\Psi_n(-\eta)-\Psi_n(\eta_{\text{ref}}))\rangle}$$

 Energy dependence of r₂ at two LHC energies

ATLAS, EPJC 78, 142(2018)

Rapidity-dependent v2(η) at RHIC energies

- From 5.02 TeV to 2.76 TeV, slightly stronger decorrelation is observed.
- Dramatic decrease of v_2 with rapidity at RHIC energies -> strong longitudinal dynamics.

Expect an even stronger decorrelation at RHIC energies.

A schematic diagram of the STAR detectors

- Outer: 788 larger cells
 - Forward Meson Spectrometer is an electromagnetic calorimeter.
 - TPC acceptance : -1< η <1; FMS acceptance : 2.5< η_{ref} <4.
 - TPC and FMS are used for this analysis, 2016 Au+Au data is used.

- FMS event-plane resolution
- 0.6

 FMS 2.5<n<4.0

 n=2

 n=3

 STAR Preliminary

 0.1

 0.0

 Centrality(%)

Comparison with the published results

- FMS shows good 2nd- and 3rd-order event plane resolutions.
- Both v_2 and v_3 are consistent with the published results from 200 GeV Au+Au collisions.

• Decorrelation of $\mathbf{v}_2(\eta)$

• $r_2(\eta)$ decreases linearly for the shown centralities.

• Decorrelation of $\mathbf{v}_3(\eta)$

• $r_3(\eta)$ decreases linearly for the shown centralities.

r_n is parameterized with a linear function

$$r_n = 1 - 2F_n \eta$$

ATLAS Collaboration, Eur. Phys. J. C (2018) 78:142

- For r₂: decorrelation is weakest in mid-central collisions.
- For r₃: weak centrality dependence.
- r_3 slope is factor of ~4 larger than r_2 slope, the trend is similar to LHC results.

- For r₂: clear p_T dependence for central collisions.
- Similar p_T dependence in central collisions at LHC energy.
- For r₃: weak p_T dependence.

- Short-range correlations are significantly suppressed.
- For longitudinal correlations, both r_2 and r_3 , show weak η_{ref} dependence.

- Significant energy dependence is observed.
- ~2 times stronger decorrelation effect than at the LHC energy 2.76 TeV.

r₂ as a function of scaled rapidity: η/y_{beam}

• Energy dependence remains after y_{beam} normalization, and changes with centrality.

Non-trivial dynamics cannot be explained by simple beam rapidity scaling.

r₂ as a function of scaled rapidity: η/y_{beam}

• Energy dependence remains after y_{beam} normalization, and changes with centrality.

Non-trivial dynamics cannot be explained by simple beam rapidity scaling.

• Ideal hydro calculation can roughly describe the LHC data, but overestimates the decorrelation effect at RHIC.

• r_2 as a function of scaled rapidity: η/y_{beam}

• Energy dependence remains after y_{beam} normalization, and changes with centrality.

Non-trivial dynamics cannot be explained by simple beam rapidity scaling.

- Ideal hydro calculation can roughly describe the LHC data, but overestimates the decorrelation effect at RHIC.
- Including a viscosity correction can better describe the RHIC data.

• r_3 as a function of scaled rapidity: η/y_{beam}

• Energy dependence remains after y_{beam} normalization, weak centrality changes.

• r_3 as a function of scaled rapidity: η/y_{beam}

- \bullet Energy dependence remains after y_{beam} normalization, weak centrality changes.
- Ideal hydro still slightly overestimates the decorrelation effect at RHIC.

 r_3 as a function of scaled rapidity: η/y_{beam}

- PRC 97,064918(2018)
- Energy dependence remains after y_{beam} normalization, weak centrality changes.
- Ideal hydro still slightly overestimates the decorrelation effect at RHIC.
- Viscosity correction estimates an even stronger v₃ decorrelation.

- Hydrodynamic calculations have further confirmed the stronger decorrelation effect at lower energies.
- 54.4 GeV and 27 GeV Au+Au data will help to better understand the decorrelation effect.(See Xiaoyu's Poster)
- Future BES measurements will provide constraints on the initial and final conditions.

- Single source vs. multi-source?
 - The AMPT results suggest the decorrelation effect will be further enhanced by the transport dynamics.
 - Further study is still needed.

- Large rapidity gap to remove short-range correlation vs. decorrelation?
- Flow decorrelation in small system?
- How to correct the decorrelation effect in the future flow measurements?

- Longitudinal correlations probe non-boost-invariant initial conditions and rapidity transports in HIC.
 - r₂ shows non-monotonic centrality dependence; r₃ shows weak centrality dependence.
 - Weak p_T dependence of v_n decorrelation suggests this is a global property of the events.
 - v_n decorrelation is η_{ref} independent.
- Decorrelation is ~2 stronger than at LHC energies, cannot be explained by simple beam rapidity scaling.
- Comparison with the (3+1)D hydro calculations:
 - Ideal hydro tuned to LHC data overestimates the decorrelation at RHIC.
 - The viscosity correction leads to a weaker decorrelation for v_2 and stronger decorrelation for v_3 .
- The decorrelation measurements at even lower energies are necessary.
- The results provide new constraints on both the initial state geometry and final state dynamics of heavy-ion collisions.

From r_n to R_n (with the EPD)

$$R_{n|n;2}(\eta) = \frac{\langle \boldsymbol{v}_n^*(-\eta_{\text{ref}})\boldsymbol{v}_n^*(-\eta)\boldsymbol{v}_n(\eta)\boldsymbol{v}_n(\eta_{\text{ref}})\rangle}{\langle \boldsymbol{v}_n^*(-\eta_{\text{ref}})\boldsymbol{v}_n(-\eta)\boldsymbol{v}_n^*(\eta)\boldsymbol{v}_n(\eta_{\text{ref}})\rangle}$$

Only sensitive to EP twist effects

$$= \frac{\langle v_n(-\eta_{\mathrm{ref}})v_n(-\eta)v_n(\eta_{\mathrm{ref}})v_n(\eta)\cos(n\left[\Phi_n(\eta_{\mathrm{ref}})-\Phi_n(-\eta_{\mathrm{ref}})+\left(\Phi_n(\eta)-\Phi_n(-\eta)\right)\right])\rangle}{\langle v_n(-\eta_{\mathrm{ref}})v_n(-\eta)v_n(\eta_{\mathrm{ref}})v_n(\eta)\cos(n\left[\Phi_n(\eta_{\mathrm{ref}})-\Phi_n(-\eta_{\mathrm{ref}})-\left(\Phi_n(\eta)-\Phi_n(-\eta)\right)\right])\rangle}$$

What can we get at RHIC energies (with EPD)?

Longitudinal dynamics hasn't been fully explored yet

 The flow measurements are questionable when the anisotropic flow decorrelates along the longitudinal direction.

Why linear decrease

• Assuming v_n in each event slowly varying around $\eta \sim 0$

$$\boldsymbol{v}_n(\eta) \approx \boldsymbol{v}_n(0) \left(1 + \alpha_n \eta\right) e^{i\beta_n \eta}, \quad \boldsymbol{v}_n^{\mathrm{k}}(0) \boldsymbol{v}_n^{\mathrm{*k}}(\eta_{\mathrm{ref}}) = X_{n;k}(\eta^{\mathrm{ref}}) - iY_{n;k}(\eta^{\mathrm{ref}})$$

Then the two particle correlator $\langle q_n^k(\eta_1)q_n^{*k}(\eta_{\rm ref})\rangle$ can be expanded

$$\langle \boldsymbol{q}_{n}^{k}(\eta_{1})\boldsymbol{q}_{n}^{*k}(\eta_{\text{ref}})\rangle \approx \langle (1+k\eta\alpha_{n})(X_{n;k}+k\beta_{n}Y_{n;k})\rangle$$

$$\approx \langle X_{n;k}+k\eta\alpha_{n}X_{n;k}+k\eta\beta_{n}Y_{n;k}\rangle$$

$$\approx \langle X_{n;k}\rangle \left(1+\frac{\langle k\eta\alpha_{n}X_{n;k}\rangle}{\langle X_{n;k}\rangle}+\frac{\langle k\eta\beta_{n}Y_{n;k}\rangle}{\langle X_{n;k}\rangle}\right)$$

With this format then $r_{n \pm n;k}$ can be approximated by:

$$r_{n|n;k}(\eta) = 1 - 2F_{n,k}^r \eta, \; F_{n,k}^r pprox F_{n,k}^{\mathrm{asy}} + F_{n,k}^{\mathrm{twi}}, \; F_{n,k}^{\mathrm{asy}} = \frac{\left\langle \alpha_n k X_{n;k}(\eta^{\mathrm{ref}}) \right\rangle}{\left\langle X_{n;k}(\eta^{\mathrm{ref}}) \right\rangle}, \; F_{n,k}^{\mathrm{twi}} = \frac{\left\langle \beta_n k Y_{n;k}(\eta^{\mathrm{ref}}) \right\rangle}{\left\langle Y_{n;k}(\eta^{\mathrm{ref}}) \right\rangle}$$

• If twist and asymmetry doesn't depend on k, then expect $F_{n;k}^{r}/k = F_{n;1}^{r}$

$$R_{n|n;2} \approx 1 - 2F_{n;2}^R \eta = 1 - 4\eta \frac{\left\langle \beta_n Y_{n;2}(\eta^{\text{ref}}) \right\rangle}{\left\langle Y_{n;2}(\eta^{\text{ref}}) \right\rangle}, \quad F_{n;2}^R = F_{n;2}^{\text{twi}}$$

R_{nln;2} and r_{nln;2} together can help separate twist and asymmetry

$$r_{n|n;2} \approx 1 - 2F_{n;2}^{\text{r}} \eta = 1 - 2F_{n,2}^{\text{twi}} \eta - 2F_{n,2}^{\text{asy}} \eta$$