Open heavy flavor measurements in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV using the STAR Heavy Flavor Tracker

Michael R. Lomnitz for the STAR Collaboration
Kent State University
Lawrence Berkeley National Laboratory
Outline

• Motivation

• STAR experiment
 • HFT subsystem design & performance

• Heavy flavor measurements
 • $D^0 R_{AA}$
 • D Meson v_2

• Model comparisons

• Outlook

• Summary
Motivation

Charm quarks:

- Produced early in heavy ion collisions at RHIC, through hard scattering
- Experience the whole evolution of the system -> good probe for medium properties

Physics interest:

- High p_T: test different energy loss mechanisms: radiative vs collisional
- At low p_T: extract medium properties from motion of heavy quarks in medium (Brownian motion), e.g. diffusion coefficient

Recent developments and understanding

• RHIC and LHC: D-meson R_{AA} suppression at high p_T: strong charm-medium interactions

• D^0 v_2 LHC results are compatible with light flavor v_2, charm thermalized?

• v_2 and R_{AA} can be used simultaneously to constrain models

• What is occurring at low p_T at RHIC?

• Low p_T v_2 is especially sensitive to the partonic medium: scattering strength, transport properties

STAR:PRL 113 (2014) 142301
ALICE: PRL 111 (2013) 102301
Outline

• Motivation
• STAR experiment
 • HFT subsystem design & performance
• Heavy flavor measurements
 • $D^0 R_{AA}$
 • D Meson v_2
• Model comparisons
• Outlook
• Summary
Excellent PID and tracking
Full azimuthal coverage at mid rapidity
-1 < \(\eta \) < 1
STAR Heavy Flavor Tracker (HFT)

TPC – Time Projection Chamber (main tracking detector in STAR)

HFT – Heavy Flavor Tracker

- SSD – Silicon Strip Detector
- IST – Intermediate Silicon Tracker
- PXL – Pixel Detector

Tracking inwards with gradually improved resolution:

Acceptance coverage:
-1 < η < 1
0 < ϕ < 2π

- SSD $r = 22$
- IST $r = 14$
- PXL $r_1 = 8, r_2 = 8$

$\sigma = \sim 1 \text{ mm}$
$\sigma = \sim 300 \mu\text{m}$
$\sigma = \sim 250 \mu\text{m}$
$\sigma = < 30 \mu\text{m}$

Michael Lomnitz, Heavy Flavor Workshop, Brookhaven N.Y. 6/7/16
• Kaon track pointing resolution exceeds the requirement <55 μm at 750 MeV/c
• Pointing resolution in the region with Al-cables ~ 45 μm
Outline

• Motivation
• STAR experiment
 • HFT subsystem design & performance
• Heavy flavor measurements
 • $D^0 R_{AA}$
 • D Meson v_2
• Model comparisons
• Outlook
• Summary
Particle Identification

- Excellent long-lived hadron and electron identification
- Secondary vertex reconstruction with HFT → Full kinematic reconstruction of charmed hadron
Topological reconstruction with HFT

- Greatly reduced combinatorial background (4 orders of magnitude)
- Highly improved S/B

<table>
<thead>
<tr>
<th></th>
<th>w/o HFT</th>
<th>w HFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 + 2011</td>
<td>1.1 B</td>
<td>780 M</td>
</tr>
<tr>
<td>significance</td>
<td>13</td>
<td>51</td>
</tr>
</tbody>
</table>

STAR Preliminary
Au+Au √sNN = 200 GeV
RHIC Run 2014

Michael Lomnitz, Heavy Flavor Workshop, Brookhaven N.Y.
6/7/16
Invariant yields

STAR:D^0 @ Au+Au 200 GeV

Au+Au 0-10%
- D^0 2014 [/20]
- D^0 2010/11 [/20]

STAR Preliminary

- p+p D^0+D^*
- p+p Levy scaled by <N_{bin}>

[High p_T] Consistent with published result, with improved statistical precision
- Finalizing systematic uncertainties for p_T < 2 GeV/c and in peripheral collisions
Nuclear Modification Factors

- High p_T: significant suppression in central Au+Au collisions. New results have improved precision.

STAR: PRL 113 (2014) 142301

Michael Lomnitz, Heavy Flavor Workshop, Brookhaven N.Y.
D^0 vs. π

- $R_{AA}(D) \sim R_{AA}(p)$ at $p_T > 4$ GeV/c

Similar suppression for light partons and charm quarks at high p_T
RHIC vs. LHC

- $R_{AA}@\text{RHIC} \sim R_{AA}@\text{LHC}$

strong charm-medium interaction at RHIC and LHC

STAR: PRL 113 (2014) 142301
ALICE: arXiv: 1509.06888

Michael Lomnitz, Heavy Flavor Workshop, Brookhaven N.Y. 6/7/16
\(D^0 \) azimuthal anisotropy significantly different from zero for \(p_T > 2 \) GeV/c
\((\chi^2/n.d.f. = 17.5/4) \)

- \(B \rightarrow D \) feed down is negligible at RHIC energies (<5% relative contribution)
D Meson v_2

- Good agreement between EP and 2 PC methods within systematics
D Meson v_2

- $D^{+/−} v_2$ compatible with D^0 albeit within large error bars
- First measurement of $D_s v_2$ in heavy-ion experiment, limited statistics
Mass effect

- Systematically below results obtained for light hadrons
 - Need better statistics for a firm conclusion

Suggests something beyond hydro
Outline

- Motivation
- STAR experiment
 - HFT subsystem design & performance
- Heavy flavor measurements
 - $D^0 R_{AA}$
 - D Meson ν_2
- Model comparisons
- Outlook
- Summary
Model comparison: TAMU

- Full T-matrix treatment, non-perturbative model with internal energy potential
- Diffusion coefficient extracted from calculation $2\pi T \times D = 2-10$
- Good agreement with D^0 meson v_2 at low p_T, data favor model including c quark diffusion in the medium
 - (w/ c diff. χ^2/n.d.f. = 1.8/5)
 - (w/o c diff. χ^2/n.d.f. = 7.4/5)
 - χ^2 tests done to v_2

STAR: PRL 113 (2014) 142301

* See talk by R. Rapp, Plenary II
Model comparison: SUBATECH

- pQCD+HTL calculation with latest EPOS3 initial conditions
- Diffusion coefficient extracted from calculations \(2\pi T \times D \sim 2-4\)
- Good agreement between model and experiment for both \(v_2\) and \(R_{AA}\) in entire \(p_T\) range
 \((\chi^2/n.d.f. = 2.8/5)\)
 - \(\chi^2\) tests done to \(v_2\)

STAR: PRL 113 (2014) 142301

* See talk by PB Gossiaux, HF Workshop
Model comparison: Duke

- Diffusion coefficient is a free parameter, fixed by fitting to R_{AA} at high p_T.
- Input value for diffusion coefficient $2\pi T \times D = 7$ fixed to fit LHC results.
- Model with $2\pi T \times D = 7$ doesn’t describe the magnitude of v_2 in experimental data.

STAR: PRL 113 (2014) 142301

* See talk by S. Cao, HF Workshop
Charm diffusion coefficient

- Scan different values of the diffusion coefficient to find best agreement to data
- Best agreement for diffusion coefficient $2\pi T \times D = \sim 1 - 3$
- This model seems to underestimate the data for $p_T > 3$ GeV/c

Diffusion coefficient

- Compatible with models predicting a value of diff. coefficient between 2 to ~10
- Lattice calculations, although with large uncertainties, are consistent with values inferred from data

<table>
<thead>
<tr>
<th></th>
<th>Diffusion coef.</th>
<th>χ^2/n.d.f. (to v_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAMU</td>
<td>2-10</td>
<td>1.8/5</td>
</tr>
<tr>
<td>SUBATECH</td>
<td>2-4</td>
<td>2.8/5</td>
</tr>
<tr>
<td>Duke</td>
<td>7</td>
<td>13.0/5</td>
</tr>
</tbody>
</table>
Outline

• Motivation
• STAR experiment
 • HFT subsystem design & performance
• Heavy flavor measurements
 • $D^0 R_{AA}$
 • D Meson v_2
• Model comparisons
• Outlook
• Summary
Outlook

• Run 14:
 • Full statistics available soon

• Run 15:
 • Full aluminum cables for inner layer of PXL
 • p+p and p+A data sets with HFT

• Run 16:
 • Full aluminum cables for inner layer of PXL
 • Factor 2-3 improvement for D^0 significance @ 1 GeV -> centrality dependence for ν_2

<table>
<thead>
<tr>
<th>Year</th>
<th>System</th>
<th>Events(MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 14:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Au+Au</td>
<td>1.2 B</td>
</tr>
<tr>
<td>Run 15:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p+p</td>
<td>1 B</td>
</tr>
<tr>
<td></td>
<td>p+Au</td>
<td>0.6 B</td>
</tr>
<tr>
<td>Run 16:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Au+Au</td>
<td>1.5 B *</td>
</tr>
<tr>
<td></td>
<td>d+Au</td>
<td>~0.3 B</td>
</tr>
</tbody>
</table>

* Up to Date
Future HFT+ Upgrade plan (2021-2022)

HFT+ upgrade motivation:
• Measure **bottom quark hadrons** at the RHIC energy
• Take data in **higher luminosity** with high efficiency

HFT+ detector requirements:
• **Faster** frame readout of 40 µs or less
• **Similar or better**: pointing resolution
 S/N ratio
 Total power consumption
 Radiation length
• **Compatible** with the existing insertion mechanism, support structure, air cooling system

HFT+ read-out electronics requirements:
• **Compatible** with STAR DAQ system and trigger

Michael Lomnitz, Heavy Flavor Workshop, Brookhaven N.Y. 6/7/16
Summary

• The STAR HFT has been successfully installed and taking data in 2014-2016

• State-of-the-art MAPS technology proved to be suitable for vertex detector application

• The HFT enabled STAR to perform a direct topological reconstruction of the charmed hadrons – factor 4 improvement in D^0 significance

• A faster HFT+ has been planned in order to measure the bottom quark hadrons at the top RHIC energy

• Presented first results of charmed meson R_{AA} and v_2 using the HFT

• D^0 is significantly suppressed for high p_T in 0-10% Au+Au collisions
• $D^0 \nu_2$ is finite for $p_T > 2.0$ GeV/c and lower than light hadrons for $1 < p_T < 4.0$ GeV/c

• Data favor model scenario where charm quarks flow

• $D^0 \nu_2$ and R_{AA} can be described simultaneously by models and are consistent with values of $2\pi T x D$ between 2 and ~ 10

• Looking forward to improved baseline from 2015 and statistics in year 2016
Thank you!
HFT Subsystems

Silicon Strip Detector (SSD)
- Double sided silicon strip modules with 95 μm pitch
- Existing detector with new faster electronics
- Radius: 22 cm – Length: ~106 cm

Intermediate Silicon Tracker (IST)
- Single sided double-metal silicon pad with 600 μm x 6 mm pitch
- Radius: 14 cm – Length: ~50 cm

PiXeL detector (PXL)
- *Monolithic Active Pixel Sensor* technology
- 20.7 μm pitch pixels
- Radius: 2.8 and 8 cm – Length: ~20 cm

First MAPS-based vertex detector at a collider experiment
HFT Status in 2014 and 2015 Run

• Collected minimum bias events in HFT acceptance:
 • 2014 Run: 1.2 Billion Au+Au @ $\sqrt{s_{NN}} = 200$ GeV
 • 2015 Run: \[\begin{array}{c}
 \sim 1\text{ Billion } p+p \\
 \sim 0.6\text{ Billion } p+Au
 \end{array}\] @ $\sqrt{s_{NN}} = 200$ GeV

• Typical trigger rate of ~0.8kHz with dead time <5%

• Sub-detector active fraction
 • PXL
 • > 99% operational at the delivery
 • 2015 Run ended with 5% dead sensors (6 damaged sensors + 1 outer ladder off)
 • IST
 • 95% channels operational, stable
 • SSD
 • 80% channels operational (one ladder off)
Topological reconstruction

- Direct topological reconstruction through hadronic channels, for instance:

\[D^0(\bar{D}^0) \rightarrow K^\mp \pi^\pm \]

B.R. 3.9% \(c\tau \sim 120 \, \mu m \)

- Greatly reduced combinatorial background (4 orders of magnitude)

- Topological cuts optimized using TMVA (Toolkit for Multivariate Analysis)
D^0 reconstruction using HFT

- Significance greatly enhanced compared to STAR previous, 2010+2011 results.

<table>
<thead>
<tr>
<th></th>
<th>w/o HFT</th>
<th>w HFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2010 + 2011$</td>
<td>1.1 B</td>
<td>780 M</td>
</tr>
<tr>
<td># events(MB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>significance</td>
<td>13</td>
<td>51</td>
</tr>
<tr>
<td>per billion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>events</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Michael Lomnitz, Heavy Flavor Workshop, Brookhaven N.Y.

6/7/16
Diffusion Coefficient from DUKE

\[\chi^2 \]

\[\chi^2_{\text{min}} + 1 \]

\[\chi^2_{\text{min}} \]

\[D (2\pi T) \]

STAR Preliminary
Comparison to ALICE

STAR Preliminary

Transverse Momentum p_T (GeV/c)

V_2

- D^0 STAR 0-80%
- ALICE 0-10%

STAR Preliminary

Transverse Momentum p_T (GeV/c)

V_2

- D^0 STAR 0-80%
- ALICE 0-10%

STAR Preliminary

Transverse Momentum p_T (GeV/c)

V_2

- D^0 STAR 0-80%
- ALICE 10-30%

STAR Preliminary

Transverse Momentum p_T (GeV/c)

V_2

- D^0 STAR 0-80%
- ALICE 30-50%

Michael Lomnitz, Heavy Flavor Workshop, Brookhaven N.Y.
v_2: Event plane method

- Event plane reconstructed using charged hadrons within STAR TPC acceptance ($|\eta|<1$)
- Corrected for detector acceptance
- Yields in ϕ–Ψ bins corrected for event plane resolution

$$v_2 = v_2^{obs} \times \left\langle \frac{1}{\text{E.P. Resolution}} \right\rangle$$

- $\Delta\eta$ gap of ~0.15 used in event plane reconstruction

$$v_{2,\text{nonFlow}} = \frac{\langle \sum_h \cos(2(\phi_{D^0} - \phi_h)) \rangle}{M v_2^h}$$

- Non-flow estimated from measured D-h correlations in p+p 200GeV

\(v_2: \) Two particle correlation

- Event by event \(v_2 \) for foreground and background

\[
< \cos(2\varphi_{h1} - 2\varphi_{h2}) > = (v_2^h)^2
\]

\[
\nu_2^D = \frac{< \cos(2\varphi_D - 2\varphi_h) >}{\sqrt{< \cos(2\varphi_{h1} - 2\varphi_{h2}) >}}
\]

- \(h_1 \) in \(\eta < 0 \), \(h_2 \) in \(\eta > 0 \)

- Statistically subtract background from foreground to obtain \(D^0 v_2 \)

- Corrected for detector acceptance

Michael Lomnitz, Heavy Flavor Workshop, Brookhaven N.Y. 6/7/16
Comparison to experiment

- $D^0 v_2$ is below light hadrons for $1 < p_T < 4$ GeV/c
 - (χ^2/n.d.f. = 9.6/3)
Efficiency: fast vs. slow HFT

- HFT (~200 µs) → HFT+ (≤40 µs)

The planned HFT+ program (2021-2022) is complementary to sPHENIX at RHIC and ALICE HF program at LHC

HFT+ flagship measurements

- R_{AA} for J/ψ and D^0 from B, and b-jets