Jet measurements in p-p and A-A collisions

Mateusz Ploskon, LBNL for the STAR Collaboration

Outline

- Introduction tools of heavy-ion collisions
- Inclusive jet cross-section and pQCD at RHIC in p-p collisions
- Jet quenching via single hadron observables
 Success and limitations
- Full jet reconstruction in heavy-ion collisions
- Jet quenching using fully reconstructed jets in heavy-ion collisions
- Outlook

Quantitative analysis: tools of heavy-ion collisions

- Inclusive cross-sections
 - Scaling of x-section ("Glauber";

e.g. hard x-sec ~ Nbinary collisions)

- Correlation measurements
 - Observable "B" under a condition "A" (trigger)
- Control over geometry
 - Correlations with reaction plane
- Jet quenching
 - Geometric biases use to the extreme
 - Color charged probes
 - Color neutral probes
- "Discovery by/through deviation"
 - use p-p and p-A collisions as references for A-A measured observables
- Interpretation -> Dependent upon modeling (!)

30 GeV/c pi0 Trigger

19th of March 2010

10

10

10

4

RIKEN/BNL High-pT, BNL, M.Ploskon

Jet cross-sections in p+p at RHIC

Multiple algorithms at different resolution scales:

- Consistent results (within uncertainties)
- Outlook for AA: Systematic understanding of jet reconstruction

p+p: Cross-section ratio R=0.2/R=0.4

p+p: cross-section ratio R=0.2/R=0.4

What happens in HI collisions?

Jet-medium interaction

QED: Bremsstrahlung is dominant energy loss mechanism at high energy limit

QCD: High energy partons lose energy via gluon radiation (QCD bremsstrahlung) Medium characterized by the transport coefficient qhat: squared momentum transfer per unit length (mean free path)

Jet finding in heavy-ion collisions

p+p Collision xy plane

Difficult task -> approximation methods

19th of March 2010

STAR TPC Event Display

Jet quenching via hadron suppression

Jet quenching: recoil jet suppression via leading hadron azimuthal correlations

High p_T hadrons: quantitative analysis

Model calculation: ASW quenching weights, detailed geometry Simultaneous fit to data.

- Reasonably self-consistent fit of independent observables
- Main limitation is the accuracy of the theory

19th of March what is missing?RIKEN/BNL High-pT, BNL, M.Ploskon

Complete Jet Reconstruction in Heavy Ion Collisions: why bother?

Jet quenching is a *partonic* proces → obscured by hadronization

High p_T hadron triggers bias towards non-interacting jets

→ suppresses the jet population that interacts the most

➔ no access to dynamics of energy loss

Soft hadron correlations (p_T<few GeV/c) are difficult to interpret as QCD jets → requires strong analysis and modeling assumptions → no clear connection to theory

Goal of full jet reconstruction: integrate over hadronic degrees of freedom to measure medium-induced jet modifications at the *partonic* level → much more detailed connection to theory

Jets in heavy ion collisions: idealization

Towards the full jet reconstruction in HI collisions

HI Jet Reconstruction: strategy

What we have learned over the past two years: "anti-quenching" biases lurk everywhere!

- 1. Detector level trigger (high-pT single particle)
- 2. Seeded reconstruction algorithms
- 3. Track and tower p_T cuts to suppress background

No shortcuts: we have to face the full event background and its fluctuations head-on

complex interplay between event background and jet signal

Need multiple *independent* background correction schemes to assess systematics

- more is better than few, but must be independent
- no shortcuts: corrections depend on observable

19th of March 2010

Modern algorithms

- Collinear and infrared safe
- Improved performance
- Rigorous definition of jet area
- Different algorithms -> different response to the underlying event
 - Developed for uniform bg subtraction (pile-up) at LHC
 - ρ: median pT per unit area of the diffuse background in an event – measured using background *"jets"* as found by kT algorithm
 - δρ: uncertainty due to noise fluctuations – non-uniformity of the event background

M. Cacciari, G. Salam, G. Soyez JHEP 0804:063,2008. e-Print: arXiv:0802.1189 [hep-ph] M. Cacciari, G.Salam Phys.Lett.B659:119-126,2008. e-Print: arXiv:0707.1378 [hep-ph] 19th of March 2010

Jet pT irresolution due to HI background

Background non-uniformity (fluctuations) and energy resolution introduce pT-smearing

Correct via "unfolding": inversion of full bin-migration matrix

Check numerical stability of procedure using jet spectrum shape from PYTHIA

Procedure must be numerically stable Correction depends critically on background model → main systematic uncertainty for HI

HI Jet Reconstruction: observables

Primary observables (jets):

- Cross sections vs p+p
- Cross sections vs R: Energy redistribution (aka jet broadening)
- h+jet and jet+jet coincidences
- subjet distributions

•

Note: in HI collisions we should very little rely on kinematics since E is smeared. Counting is more robust!

Secondary observables (hadrons):

- Iongitudinal momentum distributions (which are not
- "fragmentation functions")
- Transverse momentum distributions (j_T)

```
•...
```

E. Bruna [STAR] Nucl.Phys.A830:267c-270c,2009 H. Caines [STAR] Nucl.Phys.A830:263c-266c,2009; arXiv:0911.3211v1 [nucl-ex] M.P. [STAR] Nucl.Phys.A830:255c-258c,2009 Y.-S. Lai [PHENIX] Nucl.Phys.A830:251c-254c,2009; arXiv:0911.3399v1 [nucl-ex]

Jet production cross-sections in HI Collisions at RHIC

Why we compare different R?

Measure B: vacuum fragmentation + medium induced radiation

Energy deficit ⇔ Loss of x-section for fixed E

19th of March 2010

RIKEN/BNL High-pT, BNL, M.Ploskon

Au+Au: cross-section ratio R=0.2/R=0.4

Au+Au: cross-section ratio R=0.2/R=0.4

Stronger broadening seen in measurement than NLO calculation... strong hadronization effects? (that would be unfortunate) 19th of March 2010 RIKEN/BNL High-pT, BNL, M.Ploskon

- $R_{AA} < 1$: full jet cross-section not recovered \rightarrow jet broadening
- But systematically difficult measurement

Eur. Phys. J. C (2009) 63: 679–690 DOI 10.1140/epjc/s10052-009-1133-9 THE EUROPEAN PHYSICAL JOURNAL C

Special Article - Tools for Experiment and Theory

Q-PYTHIA: a medium-modified implementation of final state radiation

Néstor Armesto^{1,a}, Leticia Cunqueiro^{2,b}, Carlos A. Salgado^{1,c}

¹Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia, Spain ²Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati (Roma), Italy

qPYTHIA is the only publically released code at present...

(Collision geometry: Glauber calculation (~PQM))

19th of March 2010

RIKEN/BNL High-pT, BNL, M.Ploskon

qPYTHIA vs RHIC data B. Fenton-Olsen, LBNL 10_[$\mathbf{B}_{\mathbf{A}}^{\pi}$ $\pi^0 \mathbf{R}_{AA}$ **INCLUSIVE** π^0 $Au+Au \sqrt{s_{NN}} = 200 \text{ GeV}$ p+p √s = 200 GeV * PHENIX Data (arXiv:0704.3599v1) -qPYTHIA Vacuum **0.1** PHENIX Au-Au Data arXiv:0801.4020 **qPYTHIA** $[\hat{\mathbf{q}}] = \mathrm{GeV}^2/\mathrm{fm}$ 0-10% Central 10⁻⁸ RHIC RHIC 10⁻⁹ 0.01 20 18 20 12 16 18 2 8 10 14 2 12 14 16 10 p^π₋ (GeV/c) p^π₋ (GeV/c) 10⁻³ **R**^{Jet} JET R_{AA} **INCLUSIVE JETS** Au+Au √s_{NN} = 200 GeV $Au+Au \sqrt{s_{NN}} = 200 \text{ GeV}$ 0-10% Central Anti-k_T, R=0.4 10⁻⁶ 0.1E p+p STAR Au+Au STAR 10-7 *Au+Au STAR **qPYTHIA** Vacuum 0-10% Central qPYTHIA â = 1 0.01 [q] = GeV²/fm Anti-k_T, R=0.4 ĝ = 6 q̂=17 RHIC RHIC â = 61 10⁻⁹ 25 30 35 40 55 20 45 50 55 20 45 50 25 30 35 40 p_T^Jet (GeV/c) RIKE 19th of March 2010

Au+Au: cross-section ratio R=0.2/R=0.4

Stronger broadening seen in measurement than qPythia - more suppression (smaller R_{AA}) and less broadening that observed

Next generation measurement: controlled variation of jet path length

Hadron-jet coincidence

Hadron-jet coincidence

Model study: Geometrical bias. Example: Correlations at LHC

Et^a>30GeV

Model study: Geometrical bias. Example: Correlations at LHC

Et^a>30GeV

- Non-interacting/unmodified trigger jet maximizes path length for the back-to-back jets
- Significant suppression in di-jet coincidence measurements

Summary and Outlook

Complete jet reconstruction promises qualitatively new insight into jet interactions in matter

→ major focus of RHIC II and LHC HI programs

→has stimulated significant new theory activity

First results from fully reconstructed jets from STAR/RHIC show significant broadening of the jet structure in HI collisions

But significant technical issues for systematically well-controlled measurements

→ main issue: HI background characterization

→ high backgrounds expected also in high luminosity p+p at LHC

More on jets from STAR: E. Bruna [STAR] Nucl.Phys.A830:267c-270c,2009 H. Caines [STAR] Nucl.Phys.A830:263c-266c,2009; arXiv:0911.3211v1 [nucl-ex]

Future measurements

If time allows...

Jet shapes

Jet quenching: Modified jet fragmentation

Fragmentation pattern of jets which interact with the medium (AuAu) differs from same energy vacuum jets (pp) -> ratio of zT: AuAu/pp

$$z_T = p_T^{hadron} / p_T^{jet}$$

Possibility at RHIC – Sensitivity to final state gluon fraction in p-p Example: Subjets at Tevatron(D0)

- Reclustering (re-run of a kt algor) on a jet -> recombination into n-subjets separated by y_{min} cut -> used for q-g jet discrimination
- Basic Idea:

M. Ploskon, Frankfurt, June 2009

Additional considerations

Fake jet contamination/STAR

"Fake" jets: signal in excess of background model from random association of uncorrelated soft particles (i.e. not due to hard scattering)

0 35 4 p_^{Jet} (GeV/c)

Measured/Fake

Signal/Fake

30

25

- $R_{AA} < 1$: full jet cross-section not recovered \rightarrow jet broadening
- But systematically difficult measurement