The Ridge(s) in STAR

Lanny Ray University of Texas at Austin For the STAR Collaboration

Outline:

- Introduction
- Transverse momentum space
- Au-Au, Cu-Cu results
- Ridge evolution with p_t
- Constraints on models
- Conclusions

RIKEN-BNL Glasma Workshop – May 10-12, 2010

STAR's correlation measure

measures number of correlated pairs *per final state particle* square-root of $\rho_{ref}(a,b)$; (for η, ϕ space) normalized ratio of 2D binned histograms; acceptance cancellation; two-track ineff. corrections

Motivated by p-p superposition null hypothesis

Angular correlations for p-p

minijet peak persists

pp

4

the "other" K_T broadening

200 GeV Au-Au data

Analyzed 1.2M minbias 200 GeV Au+Au events; included all tracks with $p_t > 0.15$ GeV/c, $|\eta| < 1$, full ϕ

STAR Preliminary

We observe the evolution of several correlation structures including the same-side low p_t ridge

Similar analysis was done for minbias Au-Au at 62 GeV and Cu-Cu at 62 and 200 GeV

Fit function – compact characterization of correl. evolution

Fits to 62 & 200 GeV Au-Au data

Deviations from binary scaling represent new physics unique to heavy ion collisions; the departure from N-N superposition is referred to as a *transition* in the trends.⁷

Observing the transition directly – no fit model

Construct differences:

$$\frac{\Delta\rho}{\sqrt{\rho_{ref}}}(\eta_{\Delta},\phi_{\Delta}) - \frac{\Delta\rho}{\sqrt{\rho_{ref}}}(\eta_{\Delta},\phi_{\Delta} + \pi)$$

average over several bin pairs -- the offset, quadrupole (v_2) , 1D Gaussian components cancel.

directly in data

200 GeV Au-Au Not 3. $rac{\varDelta
ho}{\sqrt{
ho_{\scriptscriptstyle ref}}}$ **STAR Preliminary** φ η, 0.

Growth of the "soft-ridges"

Scaling of the Transition: final-state density?

Hypothesis: the transition centrality location depends on final-state transverse particle density, as might be expected if *final state effects* dominate.

	V_{trans}	$\% \sigma_{tot}$	${\widetilde ho}_{trans}$
Au-Au 200	2.5 - 2.7	60 - 64	2.5 ± 0.1 *
Au-Au 62	2.7 - 2.9	43 – 55	2.5 ± 0.3
Cu-Cu 200	2.8 - 3.0	22 - 30	3.2 ± 0.2
Cu-Cu 62	3.0 - 3.2	7 - 14	2.9 ± 0.1

Approximate scaling with transverse particle density at each energy; but this scaling hypothesis does not work as well for different collision systems.

STAR Preliminary

$$\tilde{\rho} = \frac{3}{2} \frac{dN_{ch}}{d\eta} / S \text{ (part./fm}^2)$$

S = overlap area (Monte Carlo Glauber) *(errors only account for v_{trans})

Scaling of the Transition: initial parton overlap?

Consider the low-*x* gluon overlap in the boosted frame of the beam nucleus in the initial state: [Kopeliovich, Levin et al. *PRC* **79**, 064906 (2009)]

Hypothesis: the transition is due to an *initial-state effect* depending on initial-state overlap of low-*x* gluons (partons).

How do different (y_t, y_t) regions contribute to the ridge?

unexpected width evolution with centrality, p_t

Ridge yield vs. p_{t,trig} in central Au-Au

Abelev et al., (STAR) Phys. Rev. C 80 (2009) 064912

• Ridge observed only in Au+Au (not present in p+p or d+Au or peripheral Au+Au) 15

Ridge/Jet p_{t,assoc} spectra in central Au-Au

Abelev et al., (STAR) Phys. Rev. C 80 (2009) 064912

- Jet p_t -spectra harder and increasing with $p_{t,trig}$, as expected from jet fragmentation
- Ridge p_t -spectra are 'bulk-like' and approx. independent of $p_{t,trig}$

Jet/Ridge 62 vs. 200 GeV in Au-Au, Cu-Cu

3.0 GeV/c < $p_T^{trigger}$ 6.0 GeV/c; 1.5 GeV/c < $p_T^{associated}$ < $p_T^{trigger}$

0

10

17

STAR preliminary

10²

<N_{part}

Large- $\Delta\eta$ azimuth correlation vs Event Plane

Di-trigger – associated particle correlations – *no ridge*

200 GeV Au-Au and d-Au

Trigger 1 is highest p_t particle in event with 5-10 GeV/c Trigger 2 has $p_t > 4$ GeV/c and back-to-back within 0.2 rad Associated particle $p_t > 1.5$ GeV/c; $\Delta \eta < 0.5$, $\Delta \varphi < 0.5$ $|\eta| < 1$ for all particles

STAR Preliminary

- No evidence of medium modifications
- No ridge

- No Mach cones
- Tangential di-jet production suggested

Constraints on Theoretical Models – "soft ridges"

Features of correlations in (y_t, y_t) and $(\eta_{\Delta}, \phi_{\Delta})$ which theory must <u>comprehensively</u> address, i.e. not piecemeal:

- Smooth evolution down to the p-p limit
- Transverse rapidity structure (peak at 1 1.5 GeV/c)
- Transition increased yield beyond binary scaling
- Elongation on η_{Λ} "soft ridge"
- Azimuth narrowing of small angle structure
- Away-side ridge amplitude growth
- Charge-ordering along η_{Δ} , ϕ_{Δ} , and $y_{t\Delta}$
- Away-side K_T broadening on both ϕ_{Δ} and $y_{t\Delta}$

Away-side ridge (dipole): centrality dependence

Hypotheses:

- (1) The away-side ridge (other than the quadrupole) is caused by global momentum conservation, where the correlation amplitude ~ $\vec{p}_{t1} \bullet \vec{p}_{t2} / N_{ch}$
- (2) The away-side ridge is caused by back-to-back minijets, but only those emitted tangentially from the surface due to strong QGP attenuation; away-side pt escapes, but is dispersed among many more pairs.

opaque core + corona with minijets

Theoretical models of same-side ridge - initial fluctuations + radial flow

- Voloshin, Nucl. Phys. A749, 287c (2005);
 Shuryak, Phys. Rev. C76, 047901 (2007) –
 beam-jet fragments pushed out by radial flow.
- Dumitru, Gelis, McLerran, Venugopalan, arXiv:0804.3858[hep-ph] glasma flux tubes pushed out by radial flow.

S. Gavin, Phys. Rev. Lett. 97, 162302 (2006) – initial state energy fluctuations spread along η by shear viscosity; pushed out by radial flow.

These fail to predict the growth of the away-side ridge.

Can they describe the two-particle (yt1,yt2) correlations on <u>both</u> the same and away-sides?

Initial state low-*x* **parton overlap** – **coherent scattering**? *a personal speculation*

incoherent vs. coherent

$$F^{2} \xrightarrow{incoh} \sum_{n} |f|^{2} = n|f|^{2}$$

 $F^{2} \xrightarrow{coh} |\sum_{n} f|^{2} = |nf|^{2} = nF_{incoh}^{2}$
(fixed phase)
 $F^{2} \propto |vfv|^{2}$
 $F_{coh}^{2} \propto N_{part}v^{4}|f|^{2} \approx N_{part}N_{bin}|f|^{2}$
 $\cong v^{3}F_{incoh}^{2}$, $N_{part} \propto v^{3}$, $N_{bin} \propto v$

Incoherent (binary) and coherent scaling for semi-hard partonic scattering

$$\frac{\Delta \rho}{\sqrt{\rho_{ref}}} \xrightarrow{binary} a \frac{N_{bin}}{N_{ch}} = \frac{a}{n_{pp}} \frac{v}{1 + x(v-1)}$$
$$\frac{\Delta \rho}{\sqrt{\rho_{ref}}} \xrightarrow{coherent} a' \frac{N_{bin}v^3}{N_{ch}} = \frac{a'}{n_{pp}} \frac{v^4}{1 + x(v-1)}$$

If the transition is from incoherent to coherent partonic scattering, then:

Summary and Conclusions

- The ridge is observed in Au-Au, Cu-Cu using all pairs and high p_t tagged "trigger" particles
- Transition in centrality trend beyond binary scaling consistent with a common initial condition, $\rho_{profile}\sigma_{NN}$
- The ridge's elongation diminishes above 4 GeV/c while typical jet-like peak returns
- At higher p_t the ridge/jet yield ratios are comparable at 62 and 200 GeV, while jet yields follow pQCD
- An away-side ridge is observed which exceeds global p_t conservation estimates
- Perturbative QCD offers a natural explanation for the two-particle correlations presented here up to the transition, above which one may speculate, e.g. coherent scattering, medium modified fragmentation, etc.
- Above this transition the same- and away-side number correlations increase and away-side (y_t,y_t) correlations persist in the minijet region not expected for opaque systems
- The 2D correlation data provide an opportunity to learn something new about QCD in dense environments, e.g. secondary interactions, gluon saturation, coherent parton-parton scattering