The Ridge(s) in STAR

STAR's correlation measure

$\rho\left(\overrightarrow{\mathrm{p}}_{1}, \overrightarrow{\mathrm{p}}_{2}\right)=2$ particle density
$\rho_{\text {sibling }}\left(\overrightarrow{\mathrm{p}}_{1}, \overrightarrow{\mathrm{p}}_{2}\right)$
Fill 2D histograms (a,b), e.g. $\left(\phi_{1}, \phi_{2}\right)$,
Event 1
$\rho_{\text {reference }}\left(\overrightarrow{p_{1}}, \vec{p}_{2}\right)$ $\left(\eta_{1}, \eta_{2}\right),\left(\phi_{1}-\phi_{2}, \eta_{1}-\eta_{2}\right),\left(p_{t 1}, \mathrm{p}_{\mathrm{t} 2}\right)$, etc.

Event 2

$$
\frac{\Delta \rho}{\sqrt{\rho_{r e f}}}=\frac{d N_{c h}}{d \eta d \phi} \quad\left[\frac{\rho_{\text {sib }}(a, b)}{\rho_{r e f}(a, b)}-1\right]
$$

measures number of correlated pairs per
square-root
of $\rho_{\text {ref }}(a, b)$;
(for η, ϕ space)

Motivated by p-p superposition null hypothesis

Angular correlations for p-p

 fragmentation (charge ordering) plus HBT for like-sign

STAR Preliminary

Same-side 2D Gaussian plus away-side ridge - classic back-to-back jet-like structure

$$
\text { transverse rapidity: } y_{t}=\ln \left(\frac{m_{t}+p_{t}}{m_{\text {pion }}}\right)
$$

$\left(\mathrm{y}_{\mathrm{t} 1}, \mathrm{y}_{\mathrm{t} 2}\right)$ correlations for same-side, away-side pairs $y_{t}=\ln \left[\left(m_{t}+p_{t}\right) / m_{\text {pion }}\right]$

Au-Au 200 GeV

shift to lower \mathbf{p}_{t}
possible $\pi-$ p separation STAR Preliminary

minijet peak persists

the "other" K_{T} broadening

Fit function - compact characterization of correl. evolution

Proton-Proton fit function

STAR Preliminary

longitudinal fragmentation 1D gaussian

HBT, e+e-
2D exponential

Au-Au fit function

Use proton-proton fit function plus $\cos \left(2 \varphi_{\Delta}\right)$ quadrupole term (\sim elliptic flow).

Fits to 62 \& 200 GeV Au-Au data

Deviations from binary scaling represent new physics unique to heavy ion collisions; the departure from N - N superposition is referred to as a transition in the trends. ${ }^{7}$

Observing the transition directly - no fit model

Construct differences:

$$
\frac{\Delta \rho}{\sqrt{\rho_{\text {ref }}}}\left(\eta_{\Delta}, \phi_{\Delta}\right)-\frac{\Delta \rho}{\sqrt{\rho_{\text {ref }}}}\left(\eta_{\Delta}, \phi_{\Delta}+\pi\right)
$$

average over several bin pairs -- the offset, quadrupole (v_{2}), 1D Gaussian components cancel.

transition observed directly in data

${ }^{\vee}$ Growth of the "soft-ridges"

Scaling of the Transition: final-state density?

Hypothesis: the transition centrality location depends on final-state transverse particle density, as might be expected if final state effects dominate.

Approximate scaling with transverse particle density at each energy; but this scaling hypothesis does not work as well for different collision systems.

STAR Preliminary
$\tilde{\rho}=\frac{3}{2} \frac{d N_{c h}}{d \eta} / S$ (part./fm $\left.{ }^{2}\right)$
(Monte Carlo Glauber)

Scaling of the Transition: initial parton overlap?

Consider the low- x gluon overlap in the boosted frame of the beam nucleus in the initial state: [Kopeliovich, Levin et al. PRC 79, 064906 (2009)]

Hypothesis: the transition is due to an initial-state effect depending on initial-state overlap of low- x gluons (partons).

Eikonal nuclear profile density a proxy for low-x gluons: (ignore differences between low- x structure functions in Au and Cu .)

$$
\rho_{\text {profile }}(x, y) \equiv \int_{-\infty}^{\infty} d z \rho_{\text {matter }}(\vec{r})
$$

Scaling within errors

How do different $\left(y_{t}, y_{t}\right)$ regions contribute to the ridge?

$\left(y_{t}, y_{t}\right)$ projection schemes

one of 11

 centralitiesfits to 9×11=99 different 2D histograms
p_{t} dependence scan: 200 GeV Data

$3.4<y_{t}<3.8$

STAR Preliminary

$$
2.6<y_{t}<3.0
$$

p_{t}-integrated

$9 y_{t}$ bins

2D fit parameter evolution

same-side jet peak parameters
200 GeV

angular correlations: marginal on p_{t} or y_{t}

$200 \mathrm{GeV} \mathrm{Cu}-\mathrm{Cu}_{\mathrm{p}_{\mathrm{t} \text {,min }}}$ dependence

STAR Preliminary

$300 \mathrm{MeV} / \mathrm{c}$.

$500 \mathrm{MeV} / \mathrm{c}$

$00 \mathrm{MeV} / \mathrm{C}$

(momeve

Fit same-side with asymmetric 2D Gaussian

Consistent with p_{t} scan widths

+ symmetric (narrower) 2D Gaussian

Ridge yield vs. $p_{\text {t,trig }}$ in central Au-Au

Abelev et al., (STAR) Phys. Rev. C 80 (2009) 064912

- Ridge yield persists to highest trigger p_{t}, correlated with jet direction
- Ridge observed only in $\mathrm{Au}+\mathrm{Au}$ (not present in $\mathrm{p}+\mathrm{p}$ or $\mathrm{d}+\mathrm{Au}$ or peripheral $\mathrm{Au}+\mathrm{Au}$) 15

Ridge/Jet $\mathbf{p}_{\mathbf{t} \text {,assoc }}$ spectra in central Au-Au

Abelev et al., (STAR) Phys. Rev. C 80 (2009) 064912

- Jet p_{t}-spectra harder and increasing with $\mathrm{p}_{\mathrm{t}, \mathrm{trig}}$, as expected from jet fragmentation
- Ridge p_{t}-spectra are 'bulk-like’ and approx. independent of $\mathrm{p}_{\mathrm{t} \text { trig }}$

Jet/Ridge 62 vs. 200 GeV in Au-Au, Cu-Cu

$3.0 \mathrm{GeV} / \mathrm{c}<\mathrm{p}_{\mathrm{T}}{ }^{\text {trigger }} 6.0 \mathrm{GeV} / \mathrm{c} ; 1.5 \mathrm{GeV} / \mathrm{c}<\mathrm{p}_{\mathrm{T}}{ }^{\text {associated }}<\mathrm{p}_{\mathrm{T}}{ }^{\text {trigger }}$

- Jet yield smaller at 62 GeV , consistent with pQCD
- Ridge/Jet ratio comparable in 62 and 200 GeV
- ridge properties related to jet/pQCD?
- Are we seeing vacuum fragmentation after energy loss on the same-side in central Au-Au with the lost energy deposited in the ridge?

Large $-\Delta \eta$ azimuth correlation vs Event Plane

Di-trigger - associated particle correlations - no ridge

200 GeV Au-Au and d-Au

Trigger 1 is highest p_{t} particle in event with $5-10 \mathrm{GeV} / \mathrm{c}$ Trigger 2 has $p_{t}>4 \mathrm{GeV} / \mathrm{c}$ and back-to-back within 0.2 rad Associated particle $\mathrm{p}_{\mathrm{t}}>1.5 \mathrm{GeV} / \mathrm{c} ; \Delta \eta<0.5, \Delta \phi<0.5$ $|\eta|<1$ for all particles

STAR Preliminary

- No evidence of medium modifications
- No ridge
- No Mach cones
- Tangential di-jet production suggested

Constraints on Theoretical Models - "soft ridges"

Features of correlations in $\left(\mathrm{y}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}}\right)$ and $\left(\eta_{\Delta}, \phi_{\Delta}\right)$ which theory must comprehensively address, i.e. not piecemeal:

- Smooth evolution down to the p-p limit
- Transverse rapidity structure (peak at $1-1.5 \mathrm{GeV} / c$)
- Transition - increased yield beyond binary scaling
- Elongation on η_{Δ} - "soft ridge"
- Azimuth narrowing of small angle structure
- Away-side ridge amplitude growth
- Charge-ordering along $\eta_{\Delta}, \phi_{\Delta}$, and $\mathrm{y}_{\mathrm{t} \Delta}$
- Away-side K_{T} broadening on both ϕ_{Δ} and $\mathrm{y}_{\mathrm{t} \Delta}$

Away-side ridge (dipole): centrality dependence

Hypotheses:

(1) The away-side ridge (other than the quadrupole) is caused by global momentum conservation, where the correlation amplitude $\sim \vec{p}_{t 1} \bullet \vec{p}_{t 2} / N_{c h}$
(2) The away-side ridge is caused by back-to-back minijets, but only those emitted tangentially from the surface due to strong QGP attenuation; away-side pt escapes, but is dispersed among many more pairs.

For $\Delta \rho /$ sqrt $\left\{\rho_{\text {ref }}\right\}$ global p_{t} conservation is approximately constant with centrality
opaque core + corona with minijets

Au-Au 200 GeV

Tangential jets: initially follow binary, reduces to surface area scaling when opaque core develops (qualitative trend suggested)

Theoretical models of same-side ridge - initial fluctuations + radial flow

> Voloshin, Nucl. Phys. A749, 287c (2005);
Shuryak, Phys. Rev. C76, 047901 (2007) -beam-jet fragments pushed out by radial flow.
$>$ Dumitru, Gelis, McLerran, Venugopalan, arXiv:0804.3858[hep-ph] -
glasma flux tubes pushed out by radial flow.

> S. Gavin, Phys. Rev. Lett. 97, 162302 (2006) initial state energy fluctuations spread along η by shear viscosity; pushed out by radial flow.

These fail to predict the growth of the away-side ridge.

Can they describe the two-particle (yt1,yt2) correlations on both the same and away-sides?

Initial state low-x parton overlap coherent scattering? a personal speculation

 incoherent vs. coherent$F^{2} \xrightarrow{\text { incol }} \sum_{n}|f|^{2}=n|f|^{2}$
$F^{2} \xrightarrow{\text { coh }}\left|\sum_{n} f\right|^{2}=|n f|^{2}=n F_{\text {incoh }}^{2}$ (fixed phase)
$F^{2} \propto|v f v|^{2}$
$F_{\text {cob }}^{2} \propto N_{p a r t} \nu^{4}|f|^{2} \approx N_{\text {part }} N_{\text {bin }}|f|^{2}$ $\cong \nu^{3} F_{\text {incoh }}^{2}, N_{p a r t} \propto v^{3}, N_{b i n} \propto v^{4}$

Incoherent (binary) and coherent scaling for semi-hard partonic scattering

$$
\begin{aligned}
& \frac{\Delta \rho}{\sqrt{\rho_{\text {ref }}}} \xrightarrow{\text { binary }} a \frac{N_{\text {bin }}}{N_{c h}}=\frac{a}{n_{p p}} \frac{v}{1+x(v-1)} \\
& \frac{\Delta \rho}{\sqrt{\rho_{r e f}}} \xrightarrow{\text { coherent }} a^{\prime} \frac{N_{b i n} v^{3}}{N_{c h}}=\frac{a^{\prime}}{n_{p p}} \frac{v^{4}}{1+x(v-1)}
\end{aligned}
$$

If the transition is from incoherent to coherent partonic scattering, then:

Summary and Conclusions

- The ridge is observed in Au-Au, Cu-Cu using all pairs and high p_{t} tagged "trigger" particles
- Transition in centrality trend beyond binary scaling consistent with a common initial condition, $\rho_{\text {profile }} \sigma_{\mathrm{NN}}$
- The ridge's elongation diminishes above $4 \mathrm{GeV} / \mathrm{c}$ while typical jet-like peak returns
- At higher p_{t} the ridge/jet yield ratios are comparable at 62 and 200 GeV , while jet yields follow PQCD
- An away-side ridge is observed which exceeds global p_{t} conservation estimates
- Perturbative QCD offers a natural explanation for the two-particle correlations presented here up to the transition, above which one may speculate, e.g. coherent scattering, medium modified fragmentation, etc.
- Above this transition the same- and away-side number correlations increase and away-side $\left(y_{t}, y_{t}\right)$ correlations persist in the minijet region - not expected for opaque systems
- The 2D correlation data provide an opportunity to learn something new about QCD in dense environments, e.g. secondary interactions, gluon saturation, coherent parton-parton scattering

