

Overview of Heavy Flavor and Quarkonia Results From STAR

Rongrong Ma (For the STAR Collaboration) 11/06/2023

2nd workshop on advancing the understanding of non-perturbative QCD using energy flow

Motivation

- Ideal probe to QGP: form early; interact strongly
- Ideal testing ground of perturbative and non-perturbative physics
 - Perturbative: production cross section, modification in the QGP
 - Non-perturbative: hadronization, modification in the QGP

Open Heavy Flavor

Heavy Quarkonia

The STAR Detector

Open Heavy Flavor

HF electron v_2 *at* 54.4 *and* 27 *GeV*

STAR, PLB 844 (2023) 138071

- 27 GeV: consistent with zero within uncertainties
- 54.4 GeV:
 - Significant v_2 comparable to that at 200 GeV
 - Charm quarks gain v_2 close to T_{pc}
 - Transport models seem to underpredict v_2 (1-2 σ for $p_T > 0.5$ GeV/c)
 - Consistent with NCQ scaling → may reach local thermal equilibrium with the QGP

Compared to light flavor

STAR, PLB 844 (2023) 138071

- v_2 comparison: π vs. ϕ vs. D^0 vs. e^{HF}
- Above 54.4 GeV: similar v_2 for all particles
- Below 54.4 GeV: hint of heavier particles dropping faster than light particles with deceasing collision energy

Au+Au: HF electron R_{AA}

STAR, JHEP 06 (2023) 176

- ✓ About a factor of 2 suppression in 0-10% central Au+Au collisions compared to p+p
 - Improved precision at high $p_{\rm T}$ upon previous results
- Provide baseline for separate measurements of $b \rightarrow e$ and $c \rightarrow e$

Au+Au: ordered HF suppression

STAR, EPJC 82 (2022) 1150

- Charm quarks are systematically more suppressed than bottom quarks
- $\checkmark\,$ Parton mass dependence of energy loss in the QGP

Au+Au collisions: D^0 -jet R_{CP}

- ✓ Hint of ~ 20-30% suppression in 0-10% central compared to peripheral collisions
- LIDO calculation overshoots suppression

LIDO, PRC 98 (2018) 064901

Au+Au collisions: D^0 -jet FF

✓ Increasing suppression for harder-fragmented charm jets, while low-*z* jets are consistent with no suppression

LIDO, PRC 98 (2018) 064901

Au+Au collisions: D^0 -jet radial profile

 \checkmark D⁰-jet radial profile consistent between central and peripheral events

• LIDO model describes results quite well

LIDO, PRC 98 (2018) 064901

D^0 -jet radial profile: RHIC vs. LHC

CMS, PRL 125 (2020) 102001

• Hint of different behaviors: energy dependence? Uncertainty limited?

Au+Au: D^0 - $\overline{D^0}$ correlation

✓ No appreciable correlation observed in 200 GeV Au+Au collisions, but statistics is limited

Au+Au: D⁰-*K* femtoscopy correlation

Probe emission source size and possible final-state interactions

✓ Within uncertainties, results are consistent with no correlation or a large source size

Charm Hadrochemistry

STAR, PRL 127 (2021) 092301

Baryon/Meson Ratio Au+Au $\sqrt{s_{NN}}$ = 200 GeV, 3 < p_{T} < 6 GeV/cSTAR 0.8 $^{+}_{s} + D_{s}^{-})/(D^{0} + \overline{D}^{0}), 1.5 < p_{+} < 5.0 \text{ GeV/c}$ $\diamond \frac{\Lambda + \overline{\Lambda}}{2K_{2}^{0}}$ $\Lambda_{c}^{+} + \Lambda_{c}$ $\Box \frac{\mathbf{p} + \overline{\mathbf{p}}}{\pi^+ + \pi^-}$ STAR Au+Au D_{s}/D^{t} Λ_{c}/D^{0} Tsinghua (seq. coal.) ---- Catania (coal.) ▲ PYTHIA 0.6 PYTHIA p+p --- Catania (coal.+frag.) **VYTHIA**, CR Yield ratio ٥ \bullet 0.2 $\sqrt{s_{NN}} = 200 \text{ GeV}$ 0 100 0 200 300 100 200 300 0 $< N_{part} >$ Number of Participants (N_{part})

- ✓ Clear enhancements of D_s/D^0 and Λ_c/D^0 ratios compared to PYTHIA → coalescence is important
- Need to extend measurements down to zero $p_{\rm T}$ (total charm cross section)

STAR, PRL 124 (2020) 172301

Ru+Ru/Zr+Zr: D^0 suppression

- ✓ Similar level of suppression in Isobar and Au+Au at the same centrality class
- Qualitatively reproduced by energy loss model calculations

Model: G. Qin, private communication

Ru+Ru/Zr+Zr: D^0 kinetic freeze-out

- D⁰ behaves differently from light hadrons
 - Earlier freeze-out
 - Hint of different system-size dependence

Summary

STAR continues to make strong impacts in studying interactions between heavy flavor and QGP in finer and finer details

Open Heavy Flavor

- Strong QGP effect at 200 GeV: mass-dependent energy loss; modified hadrochemistry; strong *D*⁰ suppression and *z*-dependent modification to *D*⁰ jets
- Hint of QGP effect decreasing at lower energy

Heavy Quarkonia

Quarkonia: energy dependence

- ✓ No significant energy dependence of $J/\psi R_{AA}$ below 200 GeV
- Can be qualitatively explained by model calculation including CNM, dissociation and regeneration
 - Regeneration starts to dominate above 200 GeV

Wei's talk (Thu. 14:20)

Quarkonia: binding energy dependence

✓ Sequential suppression at RHIC \rightarrow QGP thermal properties

11/06/2023

J/\u03c6 polarization in Ru+Ru/Zr+Zr

B.L. Ioffe, D.E. Kharzeev, PRC 68 (2003) 061902(R)

- Theory predicts $\lambda_{\theta} \sim 0.35 0.4$ in HX frame for low- $p_{\rm T}$ J/ ψ if npQCD effects are screened by the QGP
 - A hint of positive λ_{θ} is observed at the LHC

```
ALICE, PLB 815 (2021) 136146
```

- ✓ λ_{θ} and λ_{ϕ} in both HX and CS frames are consistent with 0
 - Similar to that observed in p+p collisions

STAR, PRD 102 (2020) 092009

- \checkmark No clear centrality dependence
- Consistent λ_{inv} for the two frames, as expected

Vector meson spin alignment

- Significant spin alignment for $\phi \rightarrow$ could originate from strong force field of strange quarks
- > How about J/ψ ?

11/06/2023

J/\u03c6 global spin alignment in Isobar

- First measurement of $J/\psi \rho_{00}$ at RHIC
- ✓ Lower than 1/3 (3.5 σ) in 0-80%
- No significant centrality dependence observed

J/ψ global spin alignment: RHIC vs. LHC

• Similar magnitude and centrality dependence at RHIC and LHC, despite of very different collision energy, collision system, rapidity, etc

J/ψ interference in UPC

 $a_2: \cos(2\phi)$ modulation

- ✓ ~10% spin interference signal (~3 σ) in *J*/ ψ production
- Theories could not describe data

Diff+Int: W. Zhao, et. al., private communication & arXiv:2207.03712

J/ψ interference in UPC

Credit: Ashik Ikbal Sheikh

 a_2 : cos(2 ϕ) modulation

✓ Clear rising trend with p_T

Diff+Int: W. Zhao, et. al., private communication & arXiv:2207.03712 Diff+Int+Rad: Brandenburg et. al, PRD 106 (2022) 074008

• Adding soft-photon radiation can qualitatively describe the rising trend

Summary

STAR continues to make strong impacts in studying interactions between heavy flavor and QGP in finer and finer details

Open Heavy Flavor

- Strong QGP effect at 200 GeV: mass-dependent energy loss; modified hadrochemistry; strong *D*⁰ suppression and *z*-dependent modification to *D*⁰ jets
- Hint of QGP effect decreasing at lower energy

Heavy Quarkonia

- Comprehensive measurements of suppression vs. $p_{\rm T}$, binding energy, centrality, collision energy, collision system, etc
- First signs of J/ψ spin alignment in heavy-ion collisions and entanglementenabled interference in UPC at RHIC

Outlook

\checkmark Run23-25: entering the precision era

- Unprecedented statistics for p+p, p+Au, Au+Au collisions
- Low material budget
- STAR detector with enhanced capabilities
 - Particle identification; tracking; extended coverage

Rongrong Ma, CFNS-npQCD, Stony Brook

STAR Beam Use Request

RHIC: Does J/\u03c6 Flow?

- ✓ Elliptic flow (v_2): a different angle to probe regeneration
 - Primordial: little or zero v_2
 - Regenerated: inherit v_2 of constituent charm quarks
 - Strong evidence of charm quark v_2 from D^0 measurements STAR, PRL 118 (2017) 212301

R. Snellings, New J. Phys. 13 (2011) 055008

At $p_{\rm T} > 2 {\rm ~GeV/c}$

- Consistent with zero within large uncertainties
- Disfavor the scenario of dominate regeneration from thermalized charm quarks
- Need better precision

J/\u03c6 global spin alignment in Isobar

First-order event plane

- First measurement of $J/\psi \rho_{00}$ at RHIC
- ✓ Consistent with 1/3 within large uncertainties

J/ψ production in UPC

- Coherent vs. incoherent production
- Sensitive to gluon structure and fluctuations

J/ψ in UPC: rapidity dependence

- Coherent production independent of rapidity
- Stringent constraints on model calculations
 - NLO calculation already constrained by LHC data

NLO: K. J. Eskola, et. al., PRC 106 (2022) 035202, PRC 107 (2023) 044912

Coherent J/ ψ suppression

- ✓ ~40% suppression compared to free nucleons
- LTA shadowing model describes data quite well
- STAR data sensitive to the transition region between low and high *x*

CGC: *PRD* 106 (2022) 074019 LTA: 1) Guzey, Strikman, Zhalov, EPJC 74 (2014) 7, 2942 2) Strikman, Tverskoy, Zhalov, PLB 626 (2005) 72-79

Incoherent J/\u03c6 suppression

- ✓ ~60% suppression compared to free nucleons
 - \circ Larger than tha for coherent production
 - Similar shape to the H1 data, which support sub-nucleonic fluctuations, indicating similar fluctuations for bound nucleons

H. Mantysaari, B. Schenke, PRL 117 (2016) 052301H. Mantysaari, F. Salazar, B. Schenke, PRD 106 (2022) 074019

Feed-down Contribution: J/ψ

J. Lansberg, Phys. Report, 889 (2020) 1

_		direct	from χ_{c1}	from χ_{c2}	from $\psi(2S)$
_	"low" $P_T J/\psi$	79.5 ± 4 %	$8 \pm 2\%$	$6 \pm 1.5 \%$	6.5 ± 1.5 %
	"high" $P_T J/\psi$	64.5 ± 5 %	$23 \pm 5 \%$	$5 \pm 2\%$	$7.5\pm0.5~\%$

Table 2: J/ψ FD fraction in hadroproduction at Tevatron and LHC energies.

Excited charmonia

b-hadron decays

Feed-down Contribution: J/ψ

S. Digal, P. Petreczky, H. Satz, PRD 64 (2001) 094015 L. Antoniazzi et al., PRD 46 (1992) 4828 1992; PRL 70 (1993)

TABLE I. Cross sections for direct charmonium production in π^-N and pN collisions, normalized to the overall J/ψ production cross section in the corresponding reaction [8]; feed-down fractions and mass gap to the open charm threshold.

State	$R_i(\pi^- N)$	$R_i(pN)$	$f_i(\pi^-N)$ (%)	$f_i(pN)$ (%)	$E_{\rm dis}~({\rm MeV})$
$J/\psi(1S)$	0.57 ± 0.03	0.62 ± 0.04	57±3	62 ± 4	0.642
$\chi_1(1P)$	0.72 ± 0.18	0.60 ± 0.15	20 ± 5	16 ± 4	0.229
$\chi_2(1P)$	1.04 ± 0.29	0.99 ± 0.29	15 ± 4	14 ± 4	0.183
$\psi(2S)$	0.14 ± 0.04	0.14 ± 0.04	8 ± 2	8 ± 2	0.054
J/ψ	1	1	100	100	

300 GeV fixed-target collisions

Feed-down Contribution: Y

J. Lansberg, Phys. Report, 889 (2020) 1

	$F_{\Upsilon(1S)}^{\text{direct}}$	$F_{\Upsilon(1S)}^{\chi_{b1}(1P)}$	$F_{\Upsilon(1S)}^{\chi_{b2}(1P)}$	$F_{\Upsilon(1S)}^{\Upsilon(2S)}$	$F_{\Upsilon(1S)}^{\chi_b(2P)}$	$F_{\Upsilon(1S)}^{\Upsilon(3S)}$	$F_{\Upsilon(1S)}^{\chi_b(3P)}$
"low" P_T	71 ± 5	10.5 ± 1.6	4.5 ± 0.8	7.5 ± 0.5	4 ± 1	1 ± 0.5	1.5 ± 0.5
"high" P _T	45.5 ± 8.5	21.5 ± 2.7	7.5 ± 1.2	14 ± 2	6 ± 2	2.5 ± 0.5	3 ± 1

Table 3: $\Upsilon(1S)$ FD fraction [in %] in hadroproduction at Tevatron and LHC energies.

	$F_{\Upsilon(2S)}^{\text{direct}}$	$F_{\Upsilon(2S)}^{\chi_b(2P)}$	$F_{\Upsilon(2S)}^{\Upsilon(3S)}$	$F_{\Upsilon(2S)}^{\chi_b(3P)}$
"low" P_T	65 ± 20	28 ± 16	4 ± 1	4.5 ± 3
"high" P _T	59.5 ± 11.5	28 ± 8	8 ± 2	4.5 ± 1.5

Table 4: $\Upsilon(1S)$ FD fraction [in %] in hadroproduction at Tevatron and LHC energies. We have doubled the uncertainties on $F_{\Upsilon(2S)}^{\chi_b(2P)}$ and $F_{\Upsilon(2S)}^{\chi_b(2P)}$ at low P_T since they are extrapolated.

	$F_{\Upsilon(3S)}^{\text{direct}}$	$F_{\Upsilon(3S)}^{\chi_b(3P)}$
"low" P_T	60 ± 20	40 ± 20
"high" PT	60 ± 10	40 ± 10

Table 5: $\Upsilon(3S)$ FD fraction [in %] in hadroproduction at Tevatron and LHC energies. We have doubled the uncertainties on $F_{\Upsilon(3S)}^{\chi_b(3P)}$ at low P_T since it is extrapolated.