

Measurements of quarkonium suppression in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV with the STAR experiment

Rongrong Ma (For the STAR Collaboration) Brookhaven National Laboratory

Why Quarkonia?

- Early creation: experience entire evolution of quark-gluon plasma
- Evidence of deconfinement: quark-antiquark potential color-screened by surrounding partons → (*static*) dissociation
 T. Matsui and H. Satz
 PLB 178 (1986) 416

$$r_{q\overline{q}} \sim 1 / E_{binding} > r_D \sim 1 / T$$

"Thermometer": different states dissociate at different temperatures → *sequential suppression*

	J/ψ	ψ(2S)	Y(1S)	Y(2S)	Y(3S)
E _b (MeV)	~ 640	~ 60	~ 1100	~ 500	~ 200

Other Effects

- (Re)generation of deconfined quarks
 - Reverse process of deconfinement
 - Deconfinement is a prerequisite
- Medium-induced energy loss
 - Color-octet states; parton fragmentation
- Feed-down contributions
 - Depend on species, \sqrt{s} , p_T , etc
- Cold Nuclear Matter (CNM) effects

Central AA collisions	SPS 20 GeV	RHIC 200 GeV	LHC 5 TeV
N_{ccbar} /event	~0.2	~10	~115

• And more ...

The Solenoid Tracker At RHIC

• Mid-rapidity detector: $|\eta| < 1$, $0 < \phi < 2\pi$

- **TPC**: measure momentum and energy loss
- **BEMC**: trigger on and identify high-p_T electrons
- MTD: trigger on and identify muons
 - $p_T > 1.3 \text{ GeV/c}$

Au+Au (a) 200 GeV: $J/\psi R_{AA}$ vs. p_T

STAR: PLB 797 (2019) 134917

- J/ψ is suppressed up to 15 GeV/c
- No strong p_T dependence; interplay of different effects
 - Dissociation: decrease with p_T due to formation time effects
 - Regeneration: mostly at low p_T
 - CNM: more profound at low p_T
 - b-hadron feed-down at higher p_T
- Transport and energy loss models can qualitatively describe data

Central: $R_{AA} \sim 0.4$ for $p_T > 5$ GeV/c \rightarrow dissociation in effect

 $J/\psi R_{AA}$: RHIC vs. LHC

- $p_T > 0$ GeV/c: more suppressed at RHIC in central events \rightarrow smaller regeneration contribution due to lower charm cross-section
- $p_T > 5$ GeV/c: indication of less suppression at RHIC in semi-central events \rightarrow smaller dissociation rate due to lower temperature

 ΥR_{pA} and R_{AA} vs. Centrality (a) 200 GeV

- Improved precision for Y suppression
 - 2014+2016: dimuon
 - 2011: dielectron
- CNM plays a role
- $R_{AA}^{peri} > R_{AA}^{cent}$: increasing hot medium effects
- 0-10% central: $R_{AA}^{\Upsilon(2S+3S)} < R_{AA}^{\Upsilon(1S)}$ → sequential suppression
 - Similar to that observed at the LHC

- $\Upsilon(1S) R_{AA}^{0.2 \text{TeV}} \sim R_{AA}^{2.76 \text{TeV}}$: could be due to similar CNM (~20%) + strong suppression of excited states
- $\Upsilon(2S+3S) R_{AA}^{0.2\text{TeV}} > R_{AA}^{2.76\text{TeV}}$: hint of less melting at RHIC peripheral

 ΥR_{AA} : STAR vs. Model

• Model ingredients

B. Krouppa, A. Rothkopf, M. Stickland, PRD 97 (2018) 016017 X. Du, M. He and R. Rapp, PRC 96 (2017) 054901

- Rothkopf: Complex potential (IQCD); aHydro medium; No regeneration or CNM
- Rapp: T-dependent binding energy; Kinetic rate equation; Include CNM and regeneration
- Model calculations can qualitatively describe Y suppression at RHIC

Future Perspective

Better detector with enhanced statistics

- Low material budget, EPD, iTPC, forward upgrade
- Complementary electron and muon channels

Year	System	Measurements
2017+2022	p+p @ 500 GeV	✓ J/ψ polarization
2024	p+p @ 200 GeV	✓ J/ψ in jets ✓ J/ψ vs. event activity
2024	p+Au @ 200 GeV	✓ <i>J/ψ</i> & Υ CNM
2023+2025	Au+Au @ 200 GeV	✓ low $p_T J/\psi v_1 \& v_2$ ✓ $\psi(2S)$ suppression ✓ Υ suppression (sample full <i>L</i>)

See D. Brandenburg, Sunday 8:30am CT

Summary

- J/ψ and Υ suppression in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV by the STAR experiment
- High- $p_T J/\psi$ strongly suppressed in central collisions \rightarrow dissociation
- Ground and excited Υ states exhibit different suppression

\rightarrow sequential suppression

- Model calculations can qualitatively describe quarkonium suppression at RHIC
- *Outlook*: comprehensive and high-precision measurements of quarkonium production in p+p, p+Au and Au+Au collisions through both dielectron and dimuon channels in 2022+

Feed-down Contribution

Woehri@Quarkonia'14 LHCb: EPJ C74 (2014) 3092 Υ (1S) from all 0.45 0.4 0.35 0.3 0.3 0.3 0.25 0.35 0.3 0.25 ★ LHCb, 2.0 < y < 4.5</p> CMS, lyl < 2.4, 36 pb⁻¹ χ_ь(1P) CMS Preliminary → J/ψγ χ_{c} ATLAS, lyl < 1.2</p> LHCb, 2.0 < y < 4.5 ATLAS, lyl < 0.75 CDF, lyl < 0.6 0.2 0.2 0.15 0.15 \rightarrow J/ ψ , from ratios ψ(2S) fixed-target average 0.1 0.1 ALICE, 2.5 < y < 4.0 χ_ь(2P) ō CMS, lyl < 1.2, 36 pb 0.05 0.05 χ_ь(3P) CMS Preliminary 0 25 40 p_T^{J/} [GeV] 20 30 35 10 15 Ó 20 30 40 50 60 10 J/ψ feed-down $\mathcal{V}(1S)$ food down

10-30% (vs. p_T)

 $\sim 8\%$

0-50% (vs. p_T, \sqrt{s})

χ _b (1P)	10-30% (vs. p _T)	
χ _b (2P+3P)	~5%+1-2%	
Y(2S+3S)	8-13%+1-2%	

10/31/2020

 χ_{c}

 $\psi(2S)$

B-hadron

Rongrong Ma, DNP 2020

Y(2S)

Y(3S)

80 p_^{Y(1S)} [GeV]

70

Cold Nuclear Matter Effects 200 GeV

- $R_{pAu}^{J/\psi} \sim 0.65$ at 1 GeV/c and rises to 1 at high p_T
- $R_{pAu}^{\gamma} = 0.82 \pm 0.10(stat) + 0.08(syst) 0.07(syst) \pm 0.10(global)$

- $p_T > 0$ GeV/c: describe centrality dependence quite well
 - SHM: no CNM

L. Yan, et al, PRL 97 (2006) 232301 K. Zhou, et al, PRC 89 (2014) 054911 X. Zhao, et al, PRCC 82 (2010) 064905

• $p_T > 5$ GeV/c: Tsinghua model overshoots data while TMAU model is below data in semi-central collisions

- No significant p_T dependence
 - Similar to the J/ψ case
 - Possible explanation: CNM + correlated regeneration

Future Perspective

- STAR detector configuration
 - 2017+: Heavy Flavor Tracker removed \rightarrow low material budget for electrons
 - 2018+: Event Plane Detector at forward-y \rightarrow improve EP resolution; reduce non-flow
 - 2019+: iTPC upgrade \rightarrow improved resolution; increased efficiency; extended acceptance
 - 2022+: forward tracking + calorimetry \rightarrow event activity

