

New STAR Results - A Peek into the RHIC Heavy Flavor Era

Rongrong Ma (BNL) for the STAR Collaboration

2016 RHIC&AGS Annual Users' Meeting Brookhaven National Lab June 7-10, 2015

Outline

STAR

- Motivation
- STAR experiment
 - Heavy Flavor Tracker (HFT)
 - Muon Telescope Detector (MTD)
- Recent heavy flavor results
 - $R_{\rm AA}$ and v_2 measurements for D^0
 - R_{AA} and v_2 measurements for J/ψ
- Summary & Outlook

16 14 12

Probe QGP with charm quark

pQCD predicts a phase transition from confined hadrons to Quark Gluon Plasma (QGP) in heavy-ion collisions where *partons* are the relevant degrees of freedom.

- Charm quark: $m_c >> T_{OGP}, \Lambda_{OCD}$
 - Produced in the hard scatterings at the early stage of nuclear collisions \rightarrow experience the entire evolution of medium
 - Charm cross section scales with N_{coll} in Au+Au collisions \rightarrow important input for models to calculate regeneration contribution to charmonium
 - Currently, 16% uncertainty in 0-10% Au+Au events*
 - Clean probe at RHIC as contributions from gluon splitting and bottom quark are small.
 - Its production rate is well described by pQCD in elementary collisions *PRL 113 (2014) 142301

STAR: PRD 86 (2012) 072013, NPA 931 (2014) 520 CDF: PRL 91 (2003) 241804; ALICE: JHEP01 (2012) 128 FONLL: PRL 95 (2005) 122001

Probe QGP with quarkonium

Color-screening: quarkonium dissociates in the medium

0<T<T_

 J/ψ suppression was proposed as a direct proof of QGP formation

T. Matsui and H. Satz PLB 178 (1986) 416

- However, interpreting J/ψ suppression is no easy job!
 - Hot nuclear matter effects
 - Dissociation
 - Regeneration from uncorrelated quarks
 - Medium-induced energy loss
 - Formation time effects
 - Cold nuclear matter effects
 - Feed-down of excited charmonium states and B-hadrons

Phys. Rev. C 82, 064905

The Solenoid Tracker At RHIC

• Mid-rapidity detector: $|\eta| < 1, 0 < \phi < 2\pi$

- TPC: precise momentum and energy loss
- **HFT**: topological reconstruction of D meson
 - $\sim \sigma_{DCA} < 50 \ \mu m$ for kaon at 750 MeV/c
 - \geq 1st layer of PXL < 0.4%X₀
 - ➤ Take data: 2014-2016
 - MTD: trigger on and identify muons
 - Precise timing measurement (σ~100 ps)
 - Fully installed in 2014
- 70% (HFT) and 30% (MTD) of Run14 data were used for results shown here.

06/10/2016

$D^0 R_{AA}$ in central Au+Au collisions

STAR: PRL 113 (2014) 142301

✓ $R_{AA} > 1$ for $p_T \sim 1.5$ GeV/c Charm coalescence with the flowing medium

06/10/2016

D⁰ R_{AA} in central Au+Au collisions

STAR: PRL 113 (2014) 142301

✓ $R_{AA} > 1$ for $p_T ~ 1.5$ GeV/c Charm coalescence with the flowing medium

✓ $R_{AA} \ll 1$ for $p_T > 2.5$ GeV/c Strong charm-medium interaction leading to sizable energy loss

$D^0 R_{AA}$ in central Au+Au collisions

STAR: PRL 113 (2014) 142301

✓ $R_{AA} > 1$ for $p_T \sim 1.5$ GeV/c Charm coalescence with the flowing medium

✓ $R_{AA} \ll 1$ for $p_T > 2.5$ GeV/c Strong charm-medium interaction leading to sizable energy loss

Similar suppression as pions at high p_T
 Collisional energy loss is important

Shapes of parton spectrum & fragmentation function need to be taken into account.

✓ Finite D⁰ v_2 observed above 2 GeV/c

 $D^0 v_2$: data vs model Theory: arXiv:1506.03981 private comm. 0.3 Au+Au 200GeV, 0-80% Non-flow est. D^0 0.25 TAMU w c diff. TAMU w/o c diff. 0.2 0.15 **^**2 0.1 0.05 0 **STAR Preliminary** -0.05 3 Λ 5 2 Transverse Momentum p_{τ} (GeV/c)

✓ Data favor a model with charm diffusion → Charm quark flows in the medium

v₂: D⁰ vs light hadrons

✓ v_2 for D⁰ is systematically lower than those of light hadrons → Hints that charm quarks might not be fully thermalized with medium

Can theory describe $R_{AA} \& v_2$?

- Favors model with charm diffusion coefficient between 2-11.
- Measurements with better precision are needed to discriminate between different models.

J/ ψ suppression in Au+Au collisions

• **Distinct** rising R_{AA} with p_T for J/ψ in all centrality bins as seen in the di-electron channel

Closer look at the central collisions

Compare with model calculations

• Both models include dissociation of the prompt J/ψ and contribution of regenerated $J/\psi \rightarrow$ qualitatively reproduce the rising trend seen in the data.

 J/ψ dissociation at high p_T

- $J/\psi v_2$ is consistent with zero at high $p_T \rightarrow$ regeneration contribution is small given finite v_2 of charm quarks.
- Meanwhile, J/ψ is strongly suppressed at high p_T in central events \rightarrow dissociation

Summary & Outlook

- Heavy-flavor results using part of Run14 data taken with newly upgraded MTD and HFT detectors are shown.
- D meson by HFT
 - Charm quarks interact strongly with the medium
 - Charm quarks also flow with the medium, even though they do not seem to be fully thermalized.
- J/ψ by MTD
 - Distinct rising R_{AA} with p_T
 - At high p_T , $R_{AA} < 1$ & $v_2 \sim 0 \rightarrow$ dissociation in effect
- Outlook
 - Run14&16 Au+Au data: improve precision of total charm cross-section; more differential measurements for D and J/ ψ mesons; measurements of even rare probes, e.g. Λ_c , Υ , etc
 - Run15 pp/pA data: important reference measurements & cold nuclear matter effects

Backup

- R_{AA} of $D_s > D^0$: strangeness enhancement in QGP
- v_2 of $D_s < D^0$: earlier freeze-out of D_s

PRL 110 (2013) 112301

• Calls for more statistics to make conclusive comparison between expectations and measurements (Run14+16).

Does J/ψ flow?

- Measure the second-order Fourier coefficient (v_2)
 - Primordial: little or zero v₂
 - Regenerated: inherit v_2 from the constituent charm quarks

 Consistent results from di-muon channel within large error bars

Y measurement

- Fit signal distribution after background subtraction:
 - Mean of Υ is fixed to PDG value, while width is determined from simulation.
 - Ratio of $\Upsilon(2S)/\Upsilon(3S)$ is fixed to pp value, and shape of bb and Drell-Yan background is estimated using PYTHIA

$\Upsilon(2S+3S)/\Upsilon(1S)$ ratio

PLB 735 (2014) 127 PRL 1029(2012) 222301

 Consistent with dielectron channel within large error bars

- The statistical error can be further reduced:
 - A factor of 7 more statistics with full Run14+16 data
 - Usage of mix-event can reduce statistical error by $\sqrt{2}$