

Searching for the baryon number carrier with heavy-ion collisions at the STAR experiment

Rongrong Ma (For the STAR Collaboration)

06/04/2024

VS

Valence Quarks

Junctions

X. Artru, Nucl. Phys. B 85 (1975) 442G. C. Rossi, G. Veneziano, Nucl. Phys. B 123 (1977) 507

VS.

Valence Quarks

- Carry large momentum fractions
- ➤ Hard to be stopped at midrapidity
 - o $dN/d\Delta y \sim \exp(-2.4\Delta y)$ (PYTHIA)

$$\circ \quad \Delta y = Y_{\text{beam}} - y$$

► Ensemble basis: $Q \sim B \times Z/A$

Junctions

- Consist of low-momentum gluons
- Easier to be stopped at midrapidity
 - $\circ dN/d\Delta y \sim \exp(-0.5\Delta y)$ (theory)

Theory: D. Kharzeev, PLB 378 (1996) 238

Ensemble basis: $Q < B \times Z/A$

VS.

Valence Quarks

- Carry large momentum fractions
- ➤ Hard to be stopped at midrapidity
 - $\circ \quad dN/d\Delta y \sim \exp(-2.4\Delta y) \text{ (PYTHIA)}$

$$\circ \quad \Delta y = Y_{\text{beam}} - y$$

Ensemble basis: $Q \sim B \times Z/A$

Junctions

- Consist of low-momentum gluons
- ➢ Easier to be stopped at midrapidity
 - $\circ \quad dN/d\Delta y \sim \exp(-0.5\Delta y) \text{ (theory)}$

Theory: D. Kharzeev, PLB 378 (1996) 238

Ensemble basis: $Q < B \times Z/A$

✓ THREE TESTS

- 1) Compare Q vs. $B \times Z/A$ in Ru+Ru and Zr+Zr collisions
- 2) Net-proton $dN/d\Delta y$ in γ +Au events (y varies)
- 3) Net-proton $dN/d\Delta y$ in hadronic Au+Au collisions (Y_{beam} varies)

STAR Detector

$\frac{\text{Test 1}}{Q \text{ vs. } B \times Z/A \text{ in Isobar collisions}}$

Charge and Baryon Transport

✓ Charge transport: net-charge number

$$Q = (N_{\pi^+} + N_{K^+} + N_p) - (N_{\pi^-} + N_{K^-} + N_{\bar{p}})$$

✓ Baryon transport: net-baryon number

$$B = (N_p + N_n) - (N_{\bar{p}} + N_{\bar{n}})$$

- $\blacktriangleright \text{ Measured within } |y| < 0.5$
 - ► Large rapidity transport: $\Delta y \sim 5.4 \ (\sqrt{s_{NN}} = 200 \text{ GeV})$
 - > Almost all particles decay to π , *K*, *p*, *n*
 - Measured spectra include resonance and weak decays
 - Neutron yields estimated based on proton and deuteron yields following the thermal model

The Double-ratio Method

- Very difficult to measure net-charge with high precision in one collision system
- ► Instead, we can measure the net-charge difference between ${}^{96}_{44}Ru + {}^{96}_{44}Ru$ and ${}^{96}_{40}Zr + {}^{96}_{40}Zr$ collisions

$$\Delta Q = Q_{\text{Ru+Ru}} - Q_{\text{Zr+Zr}} \approx N_{\pi} (R2_{\pi} - 1) + N_{K} (R2_{K} - 1) + N_{p} (R2_{p} - 1)$$
$$R2_{\pi} = (N_{\pi^{+}}/N_{\pi^{-}})_{\text{Ru+Ru}} / (N_{\pi^{+}}/N_{\pi^{-}})_{\text{Zr+Zr}}$$

✓ We compare:
$$\Delta Q$$
 vs. $B \times \frac{\Delta Z}{A}$ $\Delta Z = 44 - 40 = 4$, $A = 96$
B: average between Ru+Ru and Zr+Zr

Double-ratios in Isobar Collisions

- Very precise measurement with negligible uncertainties
- \succ Fit with a linear function to extrapolate down to zero $p_{\rm T}$

Identified Particle Spectra

 \blacktriangleright Blast-wave fit to extrapolate down to zero $p_{\rm T}$

Rongrong Ma, sQM 2024, Strasbourg

$\langle B \rangle / \Delta Q \times \Delta Z / A$ vs. Centrality

➤ Central collisions, B×ΔZ/A ~ 2×ΔQ
 → significantly higher than naïve expectation of 1 for valence quarks carrying baryon number

Ratio decreases from central (~2) to peripheral (~1.2) collisions

 $\langle B \rangle / \Delta Q \times \Delta Z / A$ vs. Centrality

	Has junction?	$\langle \mathbf{B} \rangle / \Delta \mathbf{Q} \times \Delta \mathbf{Z} / \mathbf{A}$
Data		1.2 - 2
UrQMD	No	0.5 - 0.8
		B/Q
HERWIG7	No	0.56
		(n+p)/Δp×ΔZ/A
Trento	N/A	0.5 - 1

- Models predict ratio less than 1, due to asymmetry in strange quarks at mid-rapdity
- > Trento: decreasing towards peripheral due to different neutron skins between Ru and Zr

Test 2 Net-proton $dN/d\Delta y$ in γ +Au Events

Why γ +*Au Events*?

> A simple process with the projectile carrying zero baryon number

- It is very hard for the incoming photon to stop multiple valence quarks simultaneously at midrapidity
 - Valence quark picture: little baryon transport
 - Junction picture: more baryon transport
- > Can directly measure net-proton $dN/d\Delta y$ in such asymmetric collisions

•
$$\Delta y = Y_{\text{beam}} - y$$
: Y_{beam} is fixed, y varies

Select γ +Au Events

> Asymmetric east vs. west event activity

BeAGLE: W. Chang, et. al., PRD 106 (2022) 012007 J. Brandenburg, et. al., arXiv:2205.05685

Rongrong Ma, sQM 2024, Strasbourg

Proton Spectra

- Measured in 12 different rapidity regions
- \succ Extrapolated down to zero $p_{\rm T}$ with Levy function

Rapidity Densities

- ▶ Clear excess of *p* over anti-*p* → incoming photons can stop baryon number
- ▶ Flat distribution of anti-p → net-p slope is not created artificially by event selection

Rapidity Slope of Net-Proton

> Clear rapidity dependence of net- $p \rightarrow$ slope = 1.13 ± 0.32

Test 3 Net-proton $dN/d\Delta y$ in Au+Au Events

Net-proton vs. Rapidity Shift

 $\circ \Delta y = Y_{\text{beam}} - y$: Y_{beam} changes with energy while $y \sim 0$ is fixed

J. Brandenburg, et. al., arXiv:2205.05685

➢ Fit with an exponential function

γ +Au vs. Au+Au vs. Theory

- ➢ No centrality dependence of the slope → not expected for valence quark stopping
- $\succ Slope_{\gamma+Au} > \sim Slope_{Au+Au}$
- Qualitatively consistent with baryon junction prediction
- Smaller than HERWIG and PYTHIA predictions

Junction theory: D. Kharzeev, PLB 378 (1996) 238

Conclusions

- Presented three independent experimental measurements that are all incompatible with the scenario where the baryon number is carried by valence quarks
 - Isobar collisions: significantly more baryon transport than charge transport
 - γ+Au: clear baryon transport with a rapidity slope smaller than PYTHIA predictions
 - > Au+Au: rapidity slope independent of centrality

Valence Quarks

Junctions

Rongrong Ma, sQM 2024, Strasbourg

Net-charge Number $\Delta Q_{\pi} = (N_{\pi^+}^{Ru} - N_{\pi^-}^{Ru}) \frac{N_{\pi}}{N_{\pi^+} - \delta} - (N_{\pi^+}^{Zr} - N_{\pi^-}^{Zr}) \frac{N_{\pi}}{N_{\pi^-} - \delta}$ $=\frac{2N_{\pi}}{N^2-\delta^2}(N_{\pi}(\delta_1-\delta_2)-\delta(\delta_1+\delta_2))$ $N_{\pi^+}^{Ru} = N_{\pi}^{Ru} + \delta_1$ $\simeq 2(\delta_1 - \delta_2) - \frac{2\delta}{N}(\delta_1 + \delta_2)$ $N_{\pi^-}^{Ru} = N_{\pi}^{Ru} - \delta_1$ $-2(\frac{\delta}{N})^3(\delta_1+\delta_2)+[...]$ $N_{-+}^{Zr} = N_{-}^{Zr} + \delta_2$ $R2_{\pi} = 1 + \Delta Q_{\pi} / N_{\pi}$ $\Delta Q_{\pi} = N_{\pi} (R2_{\pi} - 1)$ $N_{\pi^-}^{Zr} = N_{\pi}^{Zr} - \delta_2$ $R2_{\pi} = \frac{(N_{\pi^+}^{Ru}/N_{\pi^-}^{Ru})}{(N^{Z_r}/N^{Z_r})}$ $N_{\pi}^{Ru} = N_{\pi} + \delta$ $R2_{\pi} \simeq 1 + \frac{2}{N_{\pi}} (\delta_1 - \delta_2) - \frac{2\delta}{N_{\pi}^2} (\delta_1 + \delta_2)$ $=\frac{(N_{\pi^+}^{Ru}\times N_{\pi^-}^{Zr})}{(N^{Zr}\times N^{Ru})}$ $N_{-}^{Zr} = N_{-} - \delta$ $=\frac{(N_{\pi}+\delta+\delta_{1})(N_{\pi}-\delta-\delta_{2})}{(N_{\pi}-\delta+\delta_{2})(N_{\pi}+\delta-\delta_{2})} + \frac{2}{N_{\pi}^{2}}(\delta_{1}-\delta_{2})^{2} + (1/N_{\pi})^{3}[...] + [...]$ $=\frac{N_{\pi}^{2}+N_{\pi}(\delta_{1}-\delta_{2})-(\delta+\delta_{1})(\delta+\delta_{2})}{N_{\pi}^{2}-N_{\pi}(\delta_{1}-\delta_{2})-(\delta-\delta_{1})(\delta-\delta_{2})}$

Rongrong Ma, sQM 2024, Strasbourg

Estimate Neutron Yields

In the framework of the statistical thermal model, the production yield for a particle is given by:

$$N = F(m)e^{B\mu_B + S\mu_S + Q\mu_Q},\tag{5}$$

where F(m) is a function of the particle mass (m). B, S, and Q_i are the baryon number, strangeness, and electric charge of the particle, while μ_B , μ_S , and μ_Q are the chemical potentials of the corresponding conserved quantum numbers. Consequently,

$$N_{\bar{p}} = F(m_p)e^{-\mu_B - \mu_Q} \tag{6}$$

$$N_d = F(m_d)e^{2\mu_B + \mu_Q} \tag{7}$$

$$N_{\bar{d}} = F(m_d)e^{-2\mu_B - \mu_Q} \tag{8}$$

$$N_n = F(m_n \approx m_p)e^{\mu_B} = N_{\bar{p}}\sqrt{N_d/N_{\bar{d}}}$$
(9)

Verify Double-ratio Method

UrQMD: net-charge difference calculated with truth information and double-ratio method

At midrapidity, the two methods agree within 1%

STAR

Baseline: UrQMD

- UrQMD: valence quarks as the baryon number carrier
- > $Q/B \times A/Z$ → 1 towards central collisions of large nuclei
 - Largely statistical; detailed dynamics less important
- For smaller nuclei, UrQMD predicts $B/Q \times Z/A < 1$

Baseline: UrQMD vs. AMPT

- So Both UrQMD and AMPT predict $B/\Delta Q \times \Delta Z/A < 1$
- \blacktriangleright The less-than-one value is attributed to more anti-*s* quarks than *s* quarks at midrapidity
 - Strange quark: $\Delta B = \text{anti-}s s = -2/3$, $\Delta Q = \text{anti-}s s = 2/3$

STAR Does medium evolution affect B/Q?

Z. Lin CFNS workshop on baryon dynamics, 2024

> AMPT predicts similar B/Q values at all stages of medium evolution

Compare $\langle B \rangle$ and ΔQ Individually

- ➤ Central collision: UrQMD can describe baryon number, but significantly overshoots charge number → enhancing baryon transport results in too many quarks stopped at midrapidity
- Correct model should describe both simultaneously

M. Bleicher, et. al., J. Phys. G 25 (1999) 1859

$\langle B \rangle / \Delta Q \times \Delta Z / A$ vs. Centrality

- > Yellow line: use $2 \times \text{net-proton}$ as the lower limit
 - More neutrons than protons in the incoming nuclei

Select *y*+Au Events

> Asymmetric east vs. west event activity

y+*Au vs. Peripheral Collisions*

Significant baryon transport in γ+Au events
 o No difference in mesons

Rongrong Ma, sQM 2024, Strasbourg

Slope parameter vs. centrality

UrQMD

3+1D dynamics

0 - 5%

5

60

G. Pihan, et. al., arXiv:2405.19439

STAR

Rongrong Ma, sQM 2024, Strasbourg