

STAR Detector Upgrades

Rosi Reed Lehigh University For the STAR Collaboration

BCEN

21 Cel

145 Ger

15GE

TGE

62.4 GEV

Outline

- Beam Energy Scan I highlights
- STAR's Beam Energy Scan II Program
- Upgrade detectors
 - inner Time Projection Chamber
 - endcap Time Of Flight
 - Event Plane Detector
- Polarized p+p/p+A/A+A program
- Upgrade detectors
 - Forward Calorimeter System
 - Forward Tracking System

Exploring the QCD phase diagram BES-I

RHIC Beam Energy Scan Phase 1 Vary temperature *T* and baryon chemical potential µ_B Carried out 2010-2014 Rosi Reed - 2016 RHIC/AGS Users Meeting At low µ_B, the phase transition between QGP and hadrons is smooth cross-over

- Is there a 1st order transition and a critical point at higher μ_B?
- At what energies is a QGP created in the lower energy collisions?
 - Search for the turn-off of QGP signatures

STAR BES-I Signs of 1st order phase transition

- Directed flow (v₁)
 - Net protons: double sign change
 - Simple hydro models can predict the structure
 - Transport models such as UrQMD fail
- Softening of EOS?
- Expected in mixed phase

Phys. Rev. Lett. 112, 162301 (2014)

STAR BES-I The QCD critical point

See Bill Llope's talk on Tuesday!

Phys. Rev. Lett. 112 (2014) 32302

CP \rightarrow Divergence of susceptibilities (χ) and correlation lengths (ξ)

 Ratios of cumulants of the net-particle multiplicity distributions should diverge

~2-3 σ from Poisson

~100 MeV gap in μ_B between $\sqrt{s_{nn}}$ = 10 and 20 GeV

• Miss features that are narrow in μ_B

STAR BES-I Turn-off of sQGP signatures

Do we see the turn off of jet quenching?

 Enhancement competes with suppression complicating the measure of the turn off of QGP effects at low $\sqrt{s_{NN}}$ 2016 d+Au Collisions will help quantify CNM effects Rosi Reed - 2016 RHIC/AGS Users Meeting

BES-I → BES-II

- 2015 NSAC RECOMMENDATION:
 - The **upgraded RHIC facility** provides unique capabilities that must be utilized to **explore the properties and phases of quark** and gluon matter in the high temperatures of the early universe and to explore the spin structure of the proton.

http://science.energy.gov/~/media/np/nsac/pdf/2015LRP/2015_LRPNS_091815.pdf

- Trends and features from BES-I motivate for experimental measurements with higher statistical and systematic precision
 - Requires strong and concerted theoretical response
- Detector upgrades planned for BES-II focus on maximizing the fraction of measured particles from each collision

The goal of BES-II is to turn trends and features into definitive conclusions and new understanding of the key features of QCD.

BES-I → BES-II More Statistics

- BES-I exploratory scan was carried out to shed light on these questions
 - Tantalizing hints of a CP with 8 < $\sqrt{S_{NN}}$ < 20 GeV
 - How can we capitalize on these results?
- More data
 - Electron cooling
 - RHIC Luminosity upgrade
 - Needed for lower energies
 - Many results statistics
 limited

$\mathsf{BES-I} \to \mathsf{BES-II}$

Larger Acceptance

- Better coverage
 - Detector upgrades increase the acceptance at high η
 - iTPC
 - eTOF
 - EPD
- Expanding in η
 - Allows better quantification of the fluctuations → ensures measurement is sensitive to the QGP physics
 - Varying μ_B either by |y| or √s_{NN}

iTPC

iTPC

Improves

STAR

- Momentum resolution
- dE/dx resolution 7.5% to 6.2%
- Acceptance

From $|\eta| < \sim 1.0$ to $|\eta| < 1.5$, from P_T>125 MeV/c to P_T>60 MeV/c

- iTPC upgrade extends the rapidity coverage by 50%
- Current inner TPC pad row geometry is not fully instrumented
 - Only 20% of the inner sector path length is sampled
 - iTPC increases the path length coverage in the inner sectors to 100%
- Benefits many analyses, especially:
 - Fluctuations (Kurtosis)
 - Baryon v₁ measurements

https://drupal.star.bnl.gov/STAR/ starnotes/public/sn0644

- Improves 2nd-order event-plane res, away from mid-rapidity by x2
 - Enhancing elliptic flow measurements
 - For dielectron measurements it reduces hadron contamination from a dominant source of uncertainty (20%) down by an order of magnitude

Much less than the expected statistical uncertainty (10%).

iTPC project has been approved!

The iTPC in a nutshell

Inner sector 1/12

- The upgrade increases N_{channels} in the 24 inner sectors by ~x2
- Provide complete coverage for a inner sector
- New electronics for inner sectors

Pad plane layout for one sector

Future

iTPC sectors

Prototype – original layout Padplane glued onto strongback

Wire mounting prototype at Shandong University, China

- Only modification is slot position
- Pure construction project, little or no engineering design left
- Improves electrostatics between inner and outer sector
- Ready for construction

iTPC Electronics

- iFEE based on current FEE layout, but using ALICE SAMPA chip
- 2x N_{channels} per FEE

STAR

- RDO similar to existing
- Developed by BNL electronics group

RDO prototype

Pre-prototye iFEE electronic card shown plugged into the padplane

Fully instrumented TPC connections to FEE

iTPC Insertion Tooling

Cartesian Installation Tool Design

Insertion tooling needed for installation and for replacement of two outer bad sectors

Designed by Rahul Sharma, Ralph Brown and much input from LBL, CERN

Direct Flow Improvements

- Proton directed flow as a function of rapidity for minimumbias Au + Au collisions at $\sqrt{s_{NN}} = 19.6$ GeV
 - Based on UrQMD

STAR

 Simulated v₁(y) compared between the acceptance of the STAR TPC with the existing TOF barrel and the upgraded acceptance after addition of the iTPC and the eTOF

STAR iTPC \rightarrow BES II directed flow

Directed flow for protons and net-protons BES-I PRL 112,162301 (2014)

- The Forward v_1 measurement as a function of centrality
 - Shows improvements due to iTPC coverage

STAR Di-electron measurements in BES-II

Improved dE/dx will reduce the dominant systematic error

- Distinguish between models with different $\rho\text{-meson}$ broadening

Study effect of total baryon density on Low-Mass Region (LMR) excess

Rosi Reed - 2016 RHIC/AGS Users Meeting

eTOF

endcap Time Of Flight

Compressed Baryonic Matter Experiment (CBM) institutions proposed installing CBM TOF modules inside east poletip

- Acceptance
 - $-1.6 < \eta < -1.1$
- Provides STAR with an endcap TOF for BES-II
- Provides CBM a largescale integration test of the CBM TOF system

eTOF

- Allows for PID in the η range provided by the iTPC upgrade
- eTOF needed for PID at forward rapidities
- Efficiency dE/dx drops rapidly due to p_z boost
- Key for the fixed target program

See Kathryn

on Tuesday!

10

10⁻¹

5

 $2014 - \sqrt{S_{NN}} = 3.9 \text{ GeV}$

Meehan's talk

- Target inserted into beam pipe
 - Z = 210 cm

- Test run done parasitically
 - No interference w/collider mode data
 More efficient →small dedicated runs

y – p_T Map Fixed Target

- ► NA49 → onset of deconfinement = $\sqrt{S_{NN}} = 7.7 \text{GeV}$ Phys. Rev. C77, 024903 (2008),
 - < 7.7 GeV not possible in collider mode</p>
- Using just the iTPC upgrade → energy range from 3 to 4.5 GeV
- eTOF upgrade allows $\sqrt{S_{NN}} = 3.7.7 \text{ GeV}$

for STAR

Aay 2016

EPD

$2.1 < |\eta| < 5.1$

- Greatly improved Event Plane info • (especially 1st-order EP)
- Determine Centrality outside mid-rapidity •
- Better trigger & background reduction

EPD Improvements

BES-II

- BES-II + EPD
 - The **average polarization** of $\overline{\Lambda}$ and Λ from 20-50% central collisions
 - No feed-down effects → Stat uncertainty only
 - The vortical and magnetic contributions to Λ and $\overline{\Lambda}$ emitted directly from the hot zone created in a heavy ion collision
 - Statistical errors only
 - Scale of P_V has an uncertainty of +60% and -5% due to uncertainty in the amount of feed-down

EPD Improvements

Zooming we can see that the current results are not significant for $\sqrt{s_{NN}} \ge 27$ GeV

- Increase in statistics and EPD allow for a $\sim 3\sigma$ effect
- Gives an independent measure of B, key for CME/CVE verification

EPD Improvements

- Net proton v₁ versus √s_{NN} at mid-rapidity
 - BES I data from 10-40%
- The grey bars indicate what the error bars would have been with a narrow centrality

BES-I Data O BES-II BES-II + EPD

STAR EPD Prototype and Design

- 1 sector prototype successfully deployed in run 16
- EPD internal STAR review complete
- 1/8th EPD installation run
 17 for Detector
 Commissioning

Rosi Reed - 2016 RHIC/AGS Users Meeting

From 7.7 GeV →510 GeV

RHIC is an amazingly versatile machine

STAR

7.7 GeV (and below!) to study QCD phase diagram →

510 GeV polarized protons to study the spin structure of the proton

R_{pA} in Drell Yan + Direct Photon

- Fundamental questions
 - What is the A dependence of nuclear PDFs
 - R_{pA} in Drell-Yan channels
 - What are the signals for gluon saturation?
 What is the A dependence?
 - Diffraction

STAR

- Di-hadron
- Hadron+jet or γ+jet
- What is the origin of the large single spin asymmetries at high x and η?
 - Only possible with polarized pp collisions

See the RHIC Cold QCD Plan at: Arxiv: 1602.03922

See Elke-Caroline Aschenauer's talk later today!

FCS and FTS

Proposed FCS+FTS provide access to very small x

 Facilitates investigations into the dynamics and nonlinear evolution effects in the regime of high gluon-density.

Forward Calorimeter System

Forward Tracking System

STAR Forward Calorimeter System (FCS)

- Uses the refurbished PHENIX sampling ECal
 - EM resolution ~8%/√E
- Hadronic calorimeter is a sandwich Pb scintillator plate sampling type
 - Hadronic resolution ~70%/√E
 - HCAL reuses QT based FMS readout system
 - ~30% of the FMS electronics
 - The rest of FMS used for the EMCal section
- Uses the existing Forward Preshower Detector installed in 2015
 - 2.5 < η < 4

STARFCS – 2014 Beam test at FNAL

Tested the response to hadrons, electrons and muons

- 3 < E < 32 GeV
- Successful test results from 2012
- Ideally reconstructed $E = E_{EMCal} + E_{HCal}$

With É dependent weighting of E_{EMCal} energy measured e/h ratio ~0.95

32

Constant above 10 GeV.

Rosi Reed - 2016 RHIC/AGS Users Meeting

STAR Forward Tracking System (FTS)

- Forward transverse spin asymmetry measurements for p+p and p+A requires distinguishing h⁺/h⁻ for p < 80 GeV/c
- Forward Drell-Yan measurements require excellent eID/ γID to suppress hadron background
 - Improves eID by comparing charged p to E from FCS
- Saturation signals with γ+jet
 - Improves γID by vetoing hits from charged particles
- Use single-sided double-metal Silicon Ministrip sensors
 - Builds on the successful experience from the STAR IST detector (part of HFT)

Low material budget in detector acceptance

STARA dependence of nuclear PDFs

Arxiv:1602.03922

DY measurement: challenge is to suppress hadronic background while maintaining high electron efficiency The impact of the DY R_{pA} data for the anticipated statistics for a future p+Au run compared current DSSZ/EPS-09 uncertainties

STARA dependence of nuclear PDFs

Rosi Reed - 2016 RHIC/AGS Users meeting

Kinematic Coverage in x–Q²

Past, Present, and Future Experiments Capabilities

Arxiv:1602.03922

STAR

LHC experiments cover the same xrange as DY at forward h at RHIC → higher Q² • Nuclear modifications already

significantly reduced

 At intermediate Q², DY at RHIC will extend the low-x reach by nearly one decade compared to EIC

Gluon Saturation

STAR

- Measurements so far in p(d)+A collisions have strongly interacting initial+ final states
 - Complicates theoretical treatment
- Remove final state strong interaction by using γ and DY electrons

A:Q_{0A}² [GeV²], p: Q_{0p}² [GeV²] A: 0.67, p: 0.168 A: 0.50, p: 0.168 A: 0.60, p: 0.20

Summary

- FCS and FTS will allow reach to low x to probe the fundamental structure of nucleons in new kinematic regimes
- iTPC, EPD, eTOF enable superior BES-II program
 - Increase acceptance
 - Increase statistics
 - Decrease systemic uncertainties

The STAR Forward Calorimeter System and Forward Tracking System

Rosi Reed - 2016 RHIC/AGS Users Meeting

September 20th, 2015

Back up

Rosi Reed - 2016 RHIC/AGS Users Meetin

Single Spin Asymmetries

What are the subprocesses driving the large $A_{\rm N}$ at high $x_{\rm F}$ and $\eta?$

FTS allows π^+/π^-

Calorimeters only allow π^0

Want to explore η (can already measure mid-η)

Results show the process is not 2-2

STAR

Diffraction?

Collins

Target Design 2014 and 2015 remove

Target design: Gold foil 1 mm Thick ~1 cm High ~4 cm Wide 210 cm from IR

STARNet-proton cumulants in BES-II

 BES-I has revealed a non-trivial energy dependence Rapidity length of the correlation is important
 Measure as function of Δy_p in wide range is needed to establish true nature of correlation → iTPC

Planned BES II Measures

	Collision Energies (GeV):	7.7	9.1	11.5	14.5	19.6
	Chemical Potential (MeV):	420	370	315	260	205
	Observables	Millions of Events Needed				
	$R_{\rm CP}$ up to $p_{\rm T}$ 4.5 GeV	NA	NA	160	92	22
GP	Elliptic Flow of ϕ meson (v_2)	100	150	200	300	400
M Probes C.P. 1 st P.T. Q	Local Parity Violation (CME)	50	50	50	50	50
	Directed Flow studies (v_1)	50	75	100	100	200
	asHBT (proton-proton)	35	40	50	65	80
	net-proton kurtosis (κσ ²)	80	100	120	200	400
	Dileptons	100	160	230	300	400
	Proposed Number of Events:	100	160	230	300	400

45

STAR

ш

STABES Phase I – What have We Learned

- The BES at RHIC spans a range of μ_{B} that could contain features of the QCD phase diagram.

• Signatures consistent with a parton dominated regime either disappear, lose significance, or lose sufficient reach at the low energy region of the scan.

• Dilepton mass spectra show a broadening consistent with models including hadron gas and quark-gluon plasma components

•There are indicators pointing towards a softening of the equation of state which can be interpreted as evidence for a first order phase transition.

• The higher moment fluctuation is sensitive to critical phenomena, but these analyses place stringent demands on the statistics.

Response of the FCS prototype module to hadrons

Energy deposition in HCal section (Y-axis) vs energy deposition in EMCal section (X-axis) for 12 GeV hadrons (left panel). A weighted sum of the energy deposited in EMCal and HCal section for 12 GeV hadrons (right panel).

Rosi Reed - 2016 RHIC/AGS Users Meeting

$y - p_T$ Map Colider

STAR

Low Energy Electron Cooling at RHIC

• Start with 14.5 and 19,6 3X improvement

•Following year, 7.7, 9.1, and 11.5. 4X improvement with eCooling

•Run 24 weeks 100 MHz SRF Gun

STAR

- Substantial particleantiparticle split at lower √s_{NN}
- Linear dependence on the baryon chemical potential

Rosi Reed - 2016 RHIC/AGS Users Meeting

STARSearch for Phase Transition : directed flow

- A linear fit over |y| ≤ 0.5 used to find dv1/dy for all species & energies
- The dip in dv1/dy indicates an interplay between hydro and baryon dynamics (EOS)
- Λ follows p within errors

Rosi Reed - 2016 RHIC/AGS Users Meeting

Cumulant Ratio of Net-Proton multiplicity distributions Collision Energy Dependence

- Looking for fluctuation in S and κ
- $\sigma 2/M$ increases with increasing energy, consistent with Poisson expectation
- Non-monotonic behavior of net-proton $\kappa \sigma 2$ seen in top 5% central collisions
- Peripheral collisions show smooth trend
- UrQMD (no Critical Point), shows suppression at lower energies - due to baryon number conservation
- Uncertainties requires better measurements – motivation for BES II

STAR iTPC Improved performance

Increase rapidity coverage $|\eta| < 1$ to $|\eta| < 1.5$

Increased efficiency for $|\eta| > 1$ both in p_T and particle specieS

Improved dE/dx

7.5->6.2%

iTPC

54

Rosi Reed - 2016 RHIC/AGS Users Meeting

iTPC

BES-I White paper

STAR

