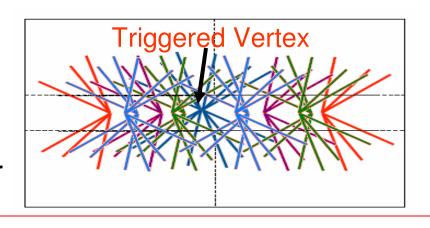


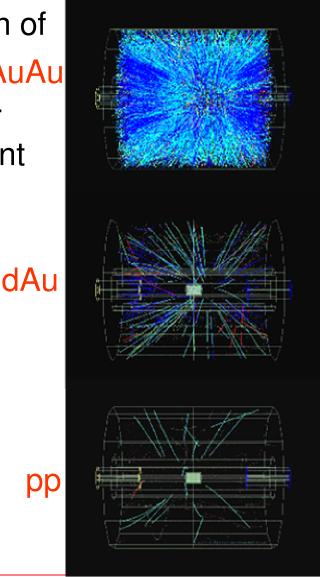
Vertex Finding in Pile-up Rich Events for pp and dAu Collisions at STAR

Rosi Reed STAR Collaboration UC Davis

Outline


- Introduction
- Description of STAR detectors
- Vertexing Methods and Challenges
 - -pp
 - dAu and AuAu
- Evaluation of algorithms on 2008 data

Introduction

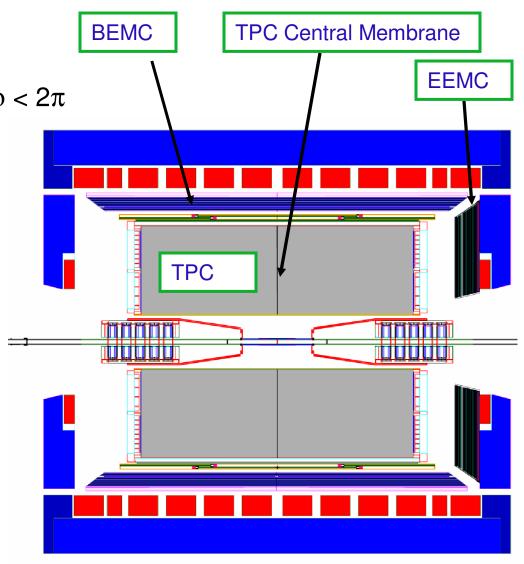


- Vertex location is key for the determination of many physics variables in all collisions AuAu
- Challenge: high luminosity + long detector readout time records multiple vertices/event
- In 2008 STAR used 2 approaches to find the triggered vertex
 - Pile-Up Proof Vertexer (PPV) in pp
 - "Minuit based" Vertexer (MinuitVF) in dAu and AuAu

Cartoon of pile-up vertices in the STAR detector

pp

STAR TPC and EMC

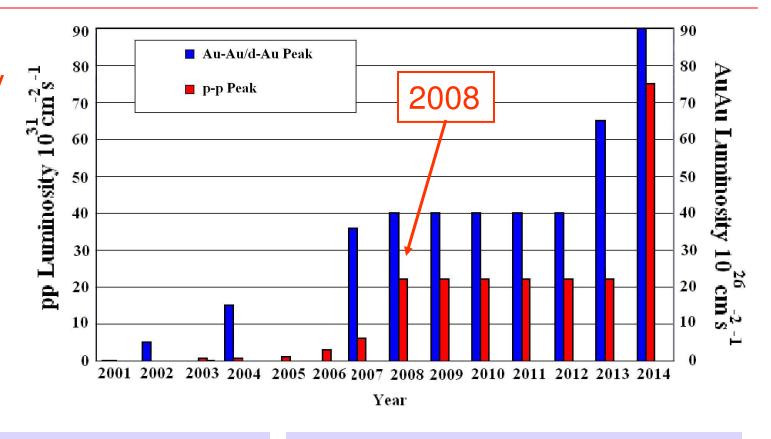


 Barrel Electromagnetic Calorimeter (BEMC)

- Acceptance: $|\eta| < 1$, $0 < \phi < 2\pi$

 Fast Detector ~μs to clear detector

- Time Projection Chamber (TPC)
 - Acceptance: $|\eta| < 1.8$, $0 < \phi < 2\pi$
 - Slow Detector ~ 80 μs
- EMC End Cap (EEMC)
 - Acceptance: 1.1< $|\eta|$ < 2 , $0 < \phi < 2\pi$

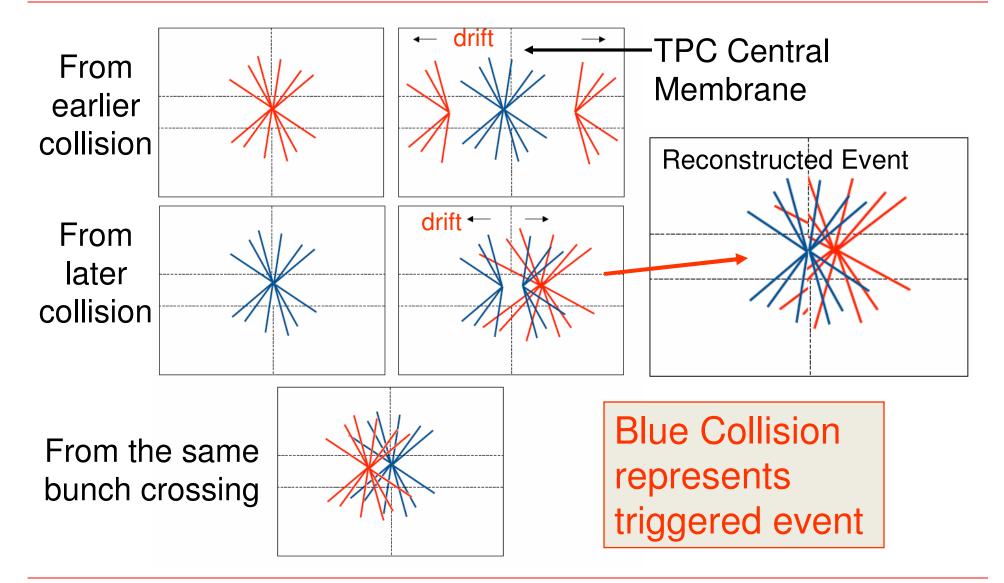


Collision Rates and Multiplicity

As luminosity increases

of Vertices in the TPC increases

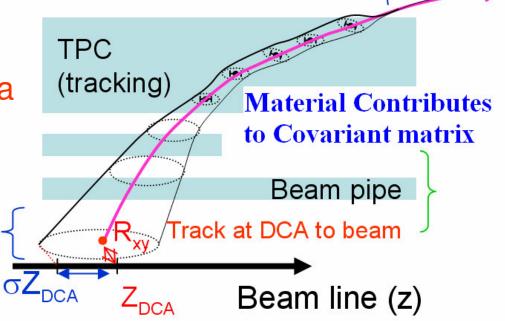
dAu 2008


- Collision Rate is ~200-300 kHz
- ~20 collisions in the TPC
- # Tracks in Unit Rapidity ~11-13

pp 2008

- Collision Rate is ~400-500 kHz
- ~36 collisions in the TPC
- # Tracks in Unit Rapidity ~3-4

Pile-Up in STAR TPC

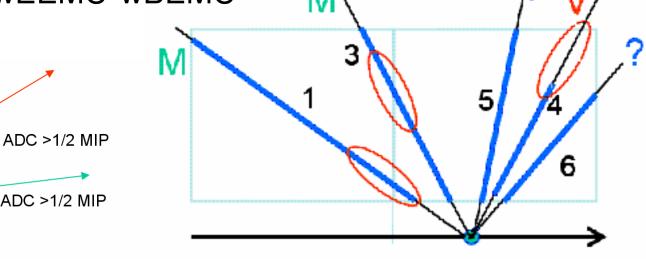

PPV Method

- From each event "Good" tracks are selected
 - Within 3 cm of the beamline
 - Minimum Track pT = 0.20 GeV/c
 - Min TPC Fit fraction = 0.7
 - Removes Pile-Up Tracks

Beam Line is a linear equation in x,y,z based on a first pass unconstrained vertexing fit

Covariant matrix used to estimated errors at DCA

Helix


extrapolation

PPV Method

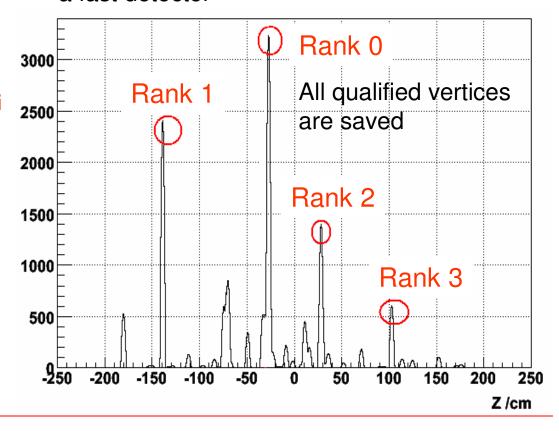
Selected tracks are given weights

— W = wTPC*wEEMC*wBEMC

φxηspace ADC >1/2 MIP matched dunno Masked element Track crosses φ x η surface of detector at one point

Tracks 1+3 Matched Tracks 5+6 Dunno Track 4 Vetoed

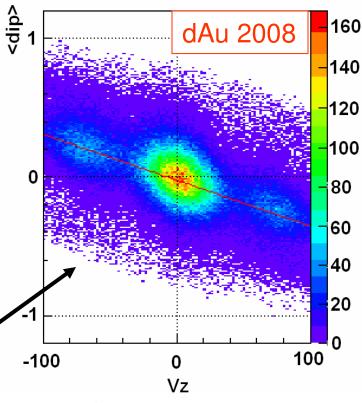
Detector


element is a rectangle in

PPV Method

- For each location in Z the Likelihood $L_i(z)$ of all tracks which extrapolate to $|\Delta z| < 1.5$ cm is calculated
 - "Probability" that the vertex is located at Z
 - Cumulative Likelihood is the product of $L_i(z)^{Wi}$
 - Wi is the track weight
- Choose Vertex Z location at L_{max}
- Associate Tracks within 3 cm

Vertices require at least 1 track pointing to a fast detector

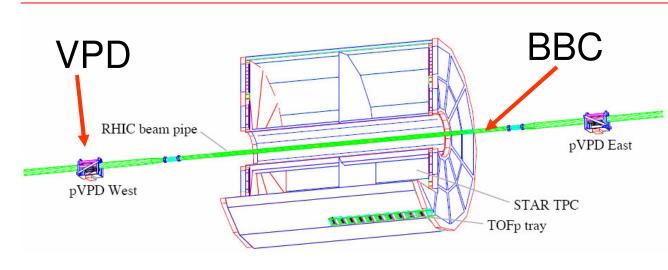


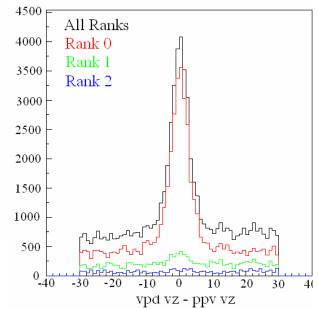
MinuitVF Method

10

- Vertex candidates are selected using 5 "Good" tracks
 - point within 6 cm in z
 - within 2 cm of the beamline
- 3D position determined by the MINUIT minimization Routine
 - Minimizes the mean distance of closest approach (DCA).
- Vertex Rank is determined by
 - The <dip angle> of tracks vs z
 - # of tracks which are matched to the BEMC
 - # of tracks which cross the TPC central membrane

ZDC-only


PPV vs MinuitVF



PPV	MinuitVF
Optimized for pp	Optimized for AuAu
1D fit using beam-line	3D fit
Requires one track pointing to a fast detector	Gives greater weight to vertices with tracks that point to a fast detector
Rank determined by likelihood	Rank determined by <dip angle="">, # of matched tracks</dip>
Probability of vertex location found by truncated log-likelihood	MINUIT used to minimize distance of closest approach of all tracks

Hardware Vertex Cross-Check

- VPD (Vertex Position Detector)
 - ~5 cm z vertex resolution with Time Of Flight electronics
 - ~25% vertex finding efficiency with pp
 - Z position determined by time difference between west+east
- BBC (Beam Beam Counter)
 - vertex resolution ~20cm at pp (~75% vertex efficiency)

Evaluation Statistics PPV

PPV performance is consistent from 2006 to 2008

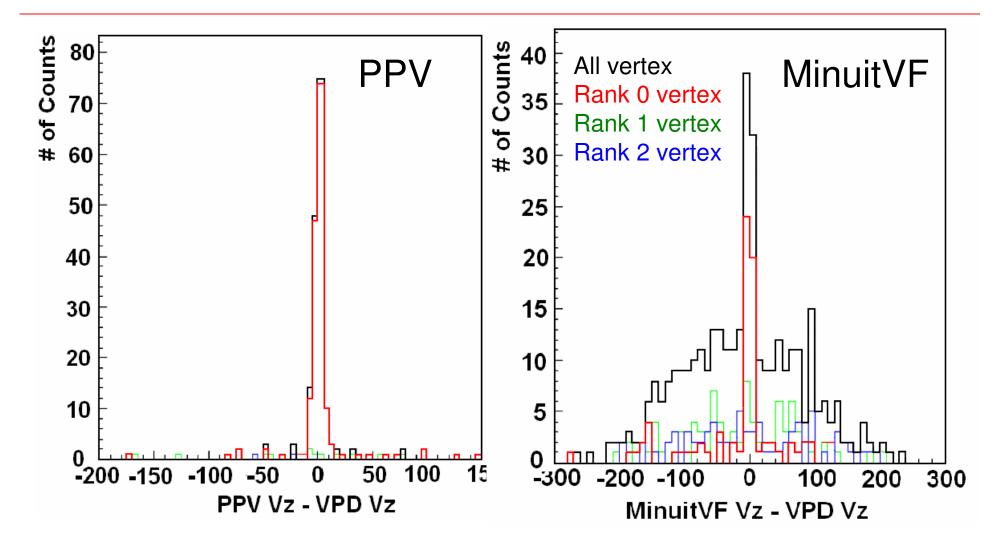
Good agreement between hardware and software

2006

2008 - Increased Luminosity

Triggers 2006	% with Vertex	
zerobias	3.0%	
minbias	48.0%	
high tower	95.8%	

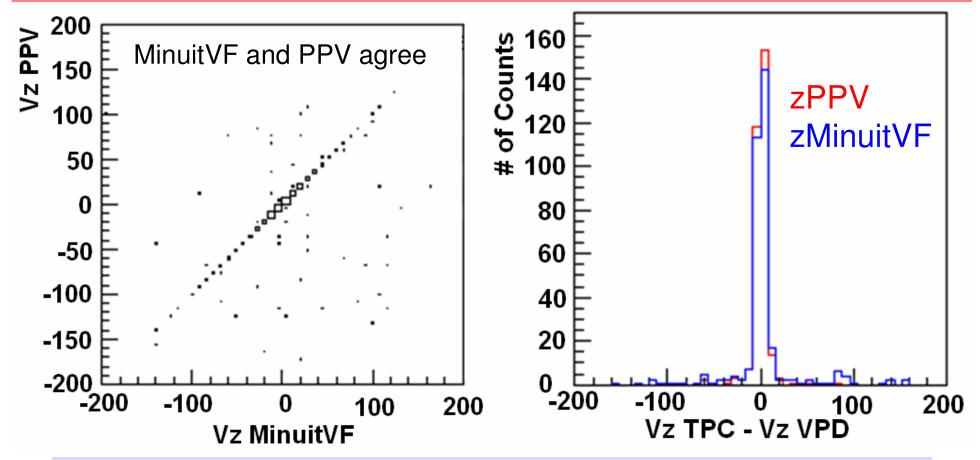
Trigger Name	% with vertex	% match	% match
zerobias	12.2%	80.0%	93.3%
bbc	56.3 %	78.4 %	87.4%
high tower	96.2%	69.2%	89.4%


Peak luminosity increased by factor of ~4 but vertex finding efficiency is similar

Zerobias increase is proportional to pile-up rate

PPV-VPD match = Δvz = 20 cm PPV-BBC match = Δvz = 60 cm

MinuitVF vs PPV Comparison in pp



Note: MinuitVF was optimized for AA. What about dAu?

Run8 PP FMSSlow

MinuitVF optimized for AuAu - # Tracks in Unit Rapidity ~ 70 (minbias) dAu - # Tracks in Unit Rapidity ~11-13 PPV optimized for pp - # Tracks in Unit Rapidity ~3-4

CHEP 2009

Conclusion

- Physics analyses require accurate knowledge of the vertex location that has fired the relevant trigger
- PPV achieves vertex reconstruction efficiencies for pp in 2008 similar to 2006
 - Vertex finders handle increased pile-up in 2008
 - Expected to handle RHIC II luminosity (~x4 from now)
- Both vertex finding algorithms work efficiently for the appropriate ion species
 - Correlation between software + hardware indicates we're finding the right vertex
- MinuitVF or PPV can be used for dAu

Back-Up Slides

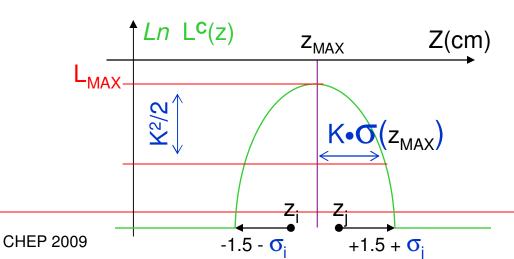
Z-Vertex Based on Likelihood

Likelihood $L_i(z)$ of vertex being at z if Z_{DCA} of i-th track is $z_i \pm \sigma_i$

$$L_i(z) = \exp \frac{-(z - z_i)^2}{2\sigma_i^2} \cdot const_i$$

Limits minimal separation of vertices

Truncated cumulative likelihood $L^{c}(z)$, tracks contribute only for $|z-z_i| < c$, c=1.5 cm


$$L^{c}(z) = \prod_{i}^{tracks} (L^{c}_{i}(z))^{W_{i}}$$
 where $W_{i} = track$ weight from matching

$$L_{i}^{c}(z) = \begin{cases} L_{i}(z) & for | z - z_{i} | < c \\ L_{i}(z_{i} + c) = const & otherwise \end{cases}$$

Solution: $Z \& \sigma Z$ of the vertex:

$$\max\{L^{c}(z)\} \rightarrow \underline{z_{MAX}}$$
$$\ln[L^{c}_{MAX}] - K^{2}/2 = K \cdot \underline{\sigma}(z_{MAX})$$

Rose Ried
$$K=4$$
 $ightarrow$ $\Delta L^c=8$

PPV Finder Method

- Truncated Cumulative Likelihood histogram created
 - Likelihood of a vertex at z given a track with a Z_{DCA} of z_i is $L_i(z) \propto \exp(-(z-z_i)^2/2\sigma_i^2)$
 - $L^{c}(z) = \Pi (L_{i}^{c}(z))^{W}$
 - Tracks only contribute when |z-z_i| < 3 cm
- Choose Vertex z location at L_{max}
 - Associate tracks if $|V_z z_i| < 3 + \sigma_i$
 - Keep vertices with at least 2 tracks that have matched in the fast detectors
- Repeat above step until all tracks have been associated