Physics motivation

xperimental setu

Event selection

Preliminary STAR results

ummary Reference

Central Exclusive Production of meson pairs in proton-proton collisions at $\sqrt{s} = 200 \text{ GeV}$ in the STAR experiment at RHIC

Rafał Sikora

AGH University of Science and Technology, Krakow, Poland

Low-x Meeting 2015 1-5 September, Sandomierz, Poland

Physics motivation		Preliminary STAR results	
Outline			

- Physics motivation
 - Central Exclusive Production
 - Double Pomeron Exchange

Experimental setup

- STAR detector at RHIC
- Forward proton detectors
- Roman Pots operation during RHIC run 2015

Event selection

- Central Diffraction trigger and events selection
- Exclusivity determination

4

Preliminary STAR results

- Mass spectrum of exclusive $\pi^+\pi^-$
- Exclusive $\pi^+\pi^-$ production proton kinematics
- Results on exclusive $\pi^+\pi^-$ production from Roman Pot Phase I
- Mass spectrum of exclusive K⁺K⁻

Summary

References

$$A \ + \ B \ \rightarrow \ A \ \stackrel{\Delta\eta_1}{\oplus} \ X \ \stackrel{\Delta\eta_2}{\oplus} \ B \$$

- colliding particles A and B emerge intact
- central state X is fully measured
- state X is well separated from A and B (rapidity gaps become larger as √s grows)

Production mechanisms:

 $\bigcirc \gamma + \gamma \rightarrow l^+ l^-$

Properties of the central state X:

$$M_X^2 = s \left(\xi_A \xi_B \sin^2 \frac{\alpha}{2} - \left(1 - \xi_A - \xi_B \right) \cos^2 \frac{\alpha}{2} \right)$$

 $\stackrel{\alpha \equiv \pi}{=} s \, \xi_A \, \xi_B, \quad \alpha = \measuredangle \left(\vec{p}_A', \vec{p}_B' \right), \quad \xi = \frac{p_{beam} - p}{p_{beam}}$

 $\begin{array}{ll} \sigma_{\mathbb{RR}} \sim s^{-1} & & \mbox{At RHIC energies} \\ \sigma_{\mathbb{PR}} \sim s^{-0.5} & \rightarrow & \mbox{Double Pomeron Exchange} \\ \sigma_{\mathbb{PP}} \sim \mbox{const} & & \mbox{expected to be dominant} \end{array}$

Rapidity of state X: $y_X = \frac{1}{2} \ln \frac{\xi_A}{\xi_B}$

This talk: production and measurement of low-mass central states in diffractive proton-proton interactions with detection of forward protons

Rafał Sikora (AGH UST, Krakow)

Low-x Meeting, Sandomierz

Non perturbative QCD (Regge picture):

- Each proton emits Pomeron
- 2 Two Pomerons fuse and produce neutral central state X

$$\begin{split} D\mathbb{P}E \text{ is isospin and G-parity filter:} & I^G = 0^+ \\ If \ \mathbb{P} \text{ carries vacuum quantum numbers:} & J^{PC} = 0^{++}, 2^{++}, ... \end{split}$$

Related questions/problems pending solution:

- What is the σ_{PP}? Current data: [1]
- What is the contribution of resonant and non-resonant production in DPE? Which models are correct? [2, 3]
- pQCD image of Pomeron implies that DPE is gluon-rich process \rightarrow gluon bound states ("glueballs") could be preferentially produced [4, 5] - are they? Most promising candidates: f₀(1500) and f₀(1710)
- Is DPE the only production mechanism at high √s? Possible alternative: g + g → X with simultaneous g exchange between protons - hints at ISR [6]. Can be verified by asymmetry in central mass distribution between collinear and non-collinear protons (RHS plot)

Physics motivation

Experimental setup

Event selection

Preliminary STAR results

Summary Reference

STAR detector at RHIC

STAR has great capabilities for CEP study:

- High-resolution tracking of charged particles by Time Projection Chamber (TPC) covering |η| < 1, 0 < φ < 2π
- Precise particle identification through dE/dx and Time-of-Flight (ToF)
- Forward rapidity 2.1 < |η| < 5.0 covered by Beam-Beam Counters (BBC) to ensure rapidity gap
- Equipped with Silicon Strip Detectors in Roman Pots for measurement of forward protons (next slide)

Relativistic Heavy Ion Collider:

- Circumference of 3.8 km
- Unique ability to collide **polarized protons** (transversely and longitudinally)
- Collides also Cu, Au, U, Al, d (deuteron), h (helion) in some combinations
- Center-of-mass energy up to $\sqrt{s} = 510 \text{ GeV}$

Experimental setup	Preliminary STAR results	
000		

Forward proton detectors

Roman Pot Phase II* (operating since 2015):

- Silicon Strip Detector (SSD) packages (active area ≈ 79 mm × 49 mm) installed in Roman Pot vessels
- Package contains 4 SSDs (2 x-type + 2 y-type) with spatial resolution \approx 30 µm
- Detectors are mounted in 4 stations (2 stations on each side of STAR central detector, 15.8 m and 17.6 m from IP) placed downstream the DX bending dipoles
- Each station composed of 2 vertically-oriented Roman Pots (above and below the beamline)

Roman Pot vessel:

Silicon Strip Detector packages:

- Presented setup of Roman Pot detectors does not require dedicated runs/special beam optics -> continuous data-taking and collecting large data samples is enabled
- Minimum beam-detector distance at operation ~20 mm
- Approximate acceptance (at $\sqrt{s}=200~GeV)$ $0.03<-t<0.3~GeV^2/c^2 \label{eq:eq:constraint}$

$$rac{3}{4}\pi \lessapprox |\varphi| \lessapprox rac{1}{4}\pi \qquad \xi < 0.6$$

 Full reconstruction of proton four-momentum possible

Rafał Sikora (AGH UST, Krakow)

Low-x Meeting, Sandomierz

Approximate Roman Pot distance from the beam vs. time:

 routine operation of Roman Pot system throughout whole RHIC run 2015 at the distance of approximately 8σ^{beam}_u from the beamline $\begin{array}{ccc} \begin{array}{c} \begin{array}{c} \text{Physics motivation} & \text{Experimental setup} & \text{Event selection} & \text{Preliminary STAR results} & \text{Summary} & \text{References} \\ \hline & & & & & & & \\ \end{array} \\ \hline \\ \begin{array}{c} \text{Central Diffraction trigger and events selection} \end{array} \end{array}$

Trigger definition:

- At least 2 hits in Time-of-Flight detector (to ensure presence of charged tracks in TPC)
- 2 Signal in trigger counters in at least 1 Roman Pot at both STAR sides (detecting diffractive protons)
- **(3)** Veto on signal in small BBC tiles covering $3.3 < |\eta| < 5.0$ (rapidity gap)

CEP analysis of two charged mesons - events selection:

- Exactly 2 opposite-sign tracks in TPC matched with hits in Time-of-Flight detector (to discriminate tracks originating from expected bunch crossing)
- Consistence between z-component of vertex measured in TPC and through time of protons detection in Roman Pots (to remove overlap of elastic scattering with minimum-bias events)

$$\left|z_{\nu x}^{\text{TPC}}-z_{\nu x}^{\text{RP}}\right| < 3\sigma$$

- Protons (consistent with $\xi = 0$) not collinear (to remove elastic events as described above) $\left(\vec{p}_1 + \vec{p}_2\right)_{\tau} > 60 \text{ MeV/c}$
- Lack of significant signal in large BBC tiles (covering $2.1 < |\eta| < 3.3$)
- Particle ID determined by

$$\left| dE/dx - dE/dx \right|_q \left| < 3\sigma, \quad q = \pi, K, \dots \right|_q$$

$\begin{array}{l} \mbox{Preliminary results from RHIC run 2015 are obtained with 2.5\% of whole collected data sample} \\ \rightarrow \mbox{final STAR results will be based on 40 times larger statistics} \end{array}$

Rafał Sikora (AGH UST, Krakow)

Summary of CEP data from run 2015:

- Collected 6×10⁸ CEP triggers in pp collisions with transverse and longitudinal protons polarization
- Integrated luminosity $\int \mathcal{L} \approx 18 \text{ pb}^{-1}$

Physics motivation	Event selection	Preliminary STAR results	
	00		

Exclusivity determination

Detection and momentum reconstruction of all final state particles provides the ability to ensure exclusivity of the system via momentum balance check

- LHS: Signal visible as strong anticorrelation of protons momentum and central tracks momentum
- RHS: Small total(missing) momentum of fully measured p + X + p system is an excellent exclusivity determinant (width of signal peak dominated by the angular beam divergence)

$$p_{T}^{miss} = \left| \left(\vec{p}_{1} + \vec{p}_{2} + \vec{q}_{1} + \vec{q}_{2} \right)_{T} \right|, \quad q = \pi, K, ...$$

Transverse momentum balance cut: $p_T^{miss} < 0.1 \text{ GeV/c}$

Rafał Sikora (AGH UST, Krakow)

Features of two-pion mass spectrum:

- broad structure extending from π⁺π⁻ threshold to approximately 1 GeV/c²
- sharp drop around $1 \text{ GeV}/c^2$ (at K^+K^- threshold $\approx f_0(980)$)
- resonance-like structure between 1-1.5 GeV/c²
- Expect ~ 2×10^5 exclusive $\pi^+\pi^-$ events at full statistics \rightarrow measurement of cross-section and Partial Waves Analysis

- Majority of protons in exclusive $\pi^+\pi^-$ production have very low momentum loss $\xi \leq 0.05$
- Acceptance in $-t \sim [0.03, 0.3] \text{ GeV}^2/c^2$
- Measurements possible with tagged protons:

 $\xi = (p_{1} - p) / p_{1}$

- dσ/dt (diffractive slope, ...)
- d²σ/dξ₁dξ₂
- angular correlations
- Θ.

-t [GeV2/c2]

Details about the results can be found in [10]

Low-x Meeting, Sandomierz

Physics motivation			Preliminary STAR results ○○○●	
Mass spectru	m of exclusive	К+К−		

Invariant mass of KK, $p_{\tau}^{miss} < 0.1 \text{ GeV/c}$, not acceptance-corrected, statistical errors only

Features of two-kaon mass spectrum:

prominent peak around 1.5-1.6 GeV/c²

- some enhancement at f₂(1270)/f₀(1370) region
- In spectrum measured by WA102 (fixed target) there is significant contribution from f₀ (980) not seen by STAR (most probably an effect of limited acceptance at low masses (low kaon p_T))
- Expect ~ 10^4 exclusive K⁺K⁻ events at full statistics \rightarrow measurement of cross-section and Partial Waves Analysis

Physics motivation 00		Preliminary STAR results	Summary	
Summary				

- STAR experiment at RHIC has suitable conditions to study diffractive physics, which has been demonstrated i.a. by CEP measurement with Roman Pot Phase I.
- In 2015 STAR collected large sample of high quality CEP-dedicated data, whose 2.5% sub-sample was used to prepare presented preliminary mass distributions of exlusively produced pion and kaon pairs.
- Expected number of reconstructed exclusive events allows precise partial wave decomposition in $\pi^+\pi^-$ and K^+K^- channels, also other channels e.g. $\pi^+\pi^-\pi^+\pi^-$ are studied.
- Many aspects of DPE are not well established thus new measurements are required in this field.
- In 2017 proton-proton data at $\sqrt{s} = 510$ GeV will be collected (larger kinematic region) hence comparison of results from two energy regimes will be possible.

Physics motivation		Preliminary STAR results	References
References			

- Ames-Bologna-CERN-Dortmund-Heidelberg-Warsaw Collaboration, A. Breakstone et al., "Inclusive Pomeron-pomeron Interactions at the CERN ISR," Z. Phys. C42 (1989) 387. [Erratum: Z. Phys.C43,522(1989)].
- [2] P. Lebiedowicz and A. Szczurek, "Exclusive pp → ppπ⁺π⁻ reaction: From the threshold to LHC," Phys. Rev. D81 (2010) 036003, arXiv:0912.0190 [hep-ph].
- [3] L. A. Harland-Lang, V. A. Khoze, and M. G. Ryskin, "Modelling exclusive meson pair production at hadron colliders," *Eur. Phys. J.* C74 (2014) 2848, arXiv:1312.4553 [hep-ph].
- [4] C. Amsler and N. A. Tornqvist, "Mesons beyond the naive quark model," Phys. Rept. 389 (2004) 61-117.
- [5] M. G. Albrow, T. D. Coughlin, and J. R. Forshaw, "Central Exclusive Particle Production at High Energy Hadron Colliders," Prog. Part. Nucl. Phys. 65 (2010) 149–184, arXiv:1006.1289 [hep-ph].
- [6] Ames-Bologna-CERN-Dortmund-Heidelberg-Warsaw Collaboration, A. Breakstone *et al.*, "The Reaction pomeron-pomeron → π⁺π⁻ and an unusual production mechanism for the f₂(1270)," Z. Phys. C48 (1990) 569–576.
- [7] The Axial Field Spectrometer Collaboration, T. Åkesson et al., "A search for glueballs and a study of double pomeron exchange at the CERN intersecting storage rings," Nuclear Physics B 264 (1986) 154 – 184.
- [8] CDF Collaboration, T. A. Aaltonen *et al.*, "Measurement of central exclusive π⁺π⁻ production in pp collisions at √s = 0.9 and 1.96 TeV at CDF," *Phys. Rev.* D91 no. 9, (2015) 091101, arXiv:1502.01391 [hep-ex].
- [9] P. H. Pile, S. Tepikian, K. Yip, W. Guryn, and J. H. Lee, "Beam Optics and the pp2pp Setup of the STAR Experiment at RHIC," Conf. Proc. C1205201 (2012) 1311–1313.
- [10] L. Adamczyk, W. Guryn, and J. Turnau, "Central exclusive production at RHIC," Int. J. Mod. Phys. A29 no. 28, (2014) 1446010, arXiv:1410.5752 [hep-ex].
- [11] WA102 Collaboration, D. Barberis et al., "A Partial wave analysis of the centrally produced K+K- and K0(S) K0(S) systems in p p interactions at 450-GeV/c and new information on the spin of the f(J)(1710)," Phys. Lett. B453 (1999) 305-315, arXiv:hep-ex/9903042 [hep-ex].