

Recent TMD Measurements in *pp* Collisions at RHIC-STAR

Yixin Zhang for the STAR Collaboration Shandong University Mar 30, 2025

Supported in part by

Office of Science

Outline

- Motivation
- Sivers effect
- Collins effect & Transversity
- Outlook & Summary

Challenges in Transverse Single-Spin Asymmetry (TSSA)

> Anomalously large A_N in pp collisions observed for nearly 40 years

$$\mathbf{A}_N = rac{d\sigma^\uparrow - d\sigma^\downarrow}{d\sigma^\uparrow + d\sigma^\downarrow}$$

• LO QCD predicts $A_N \sim 0$

G. Kane, J. Pumplin, W. Repko, Phys. Rev. Lett 41,1689 (1978)

> TSSA of different hadrons at different beam energies

- Stable in different C.M. energies
- Interpreted by the twist-3 and transversemomentum-dependent (TMD) formalisms

Mechanisms for Transverse Single-Spin Asymmetry

- > Transverse Momentum Dependent (TMD) parton distributions and fragmentation functions.
 - Need two scales (Q and p_T), $Q >> p_T$
 - ✓ Sivers effect (*Sivers'90*):

Parton spin and k_{\perp} correlation in initial state (related to orbital angular momentum)

✓ Collins effect (*Collins'93*):

Quark spin and k_{\perp} correlation in fragmentation process (coupled with transversity)

- Twist-3 mechanism (Efremov-Teryaev'82, Qiu-Sterman'91):
 - Collinear/twist-3 quark-gluon correlation + fragmentation functions
 - Need one scale ($Q \text{ or } p_T$), $Q, p_T >> \Lambda_{QCD}$
 - Consistent with TMD mechanism in the overlapping kinematics region

TMDs

Leading Quark TMDPDFs \longrightarrow Nucleon Spin \bigoplus Quark Spin				
		Quark Polarization		
		Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
Nucleon Polarization	U	$f_1 = \underbrace{ullet}_{ extsf{Unpolarized}}$		$h_1^\perp = \bigcirc - \checkmark$ Boer-Mulders
	L		$g_1 = \underbrace{\bullet }_{\text{Helicity}} - \underbrace{\bullet }_{\text{Helicity}}$	$h_{1L}^{\perp} = \underbrace{\checkmark}_{\text{Worm-gear}} - \underbrace{\checkmark}_{\text{Worm-gear}}$
	т	$f_{1T}^{\perp} = \underbrace{\bullet}_{\text{Sivers}}^{\uparrow} - \underbrace{\bullet}_{\downarrow}$	$g_{1T}^{\perp} = \underbrace{\stackrel{\uparrow}{\bullet \bullet}}_{\text{Worm-gear}} - \underbrace{\stackrel{\uparrow}{\bullet \bullet}}_{\text{Worm-gear}}$	$h_{1} = \underbrace{\stackrel{\uparrow}{\blacktriangleright} - \stackrel{\uparrow}{\uparrow}}_{\text{Transversity}} \\ h_{1T}^{\perp} = \underbrace{\stackrel{\uparrow}{\checkmark} - \stackrel{\uparrow}{\checkmark}}_{\text{Pretzelosity}} $

Leading Quark TMDFFs				
	Quark Polarization			
		Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
Unpolarized	(or Spin 0) Hadrons	$D_1 = \bigcirc$ Unpolarized		$H_1^\perp = \underbrace{\uparrow - \downarrow}_{\text{Collins}}$
adrons	L		$G_1 = \underbrace{\bullet \bullet}_{\text{Helicity}} - \underbrace{\bullet \bullet}_{\text{Helicity}}$	$H_{1L}^{\perp} = \textcircled{\hspace{0.1cm}}{\bullet} - \textcircled{\hspace{0.1cm}}{\bullet} \xrightarrow{\hspace{0.1cm}}{\bullet}$
Polarized Ha	т	$D_{1T}^{\perp} = \underbrace{\bullet}^{\uparrow} - \underbrace{\bullet}_{Polarizing FF}$	$G_{1T}^{\perp} = +$	$H_1 = \underbrace{\stackrel{\uparrow}{\blacktriangleright}}_{\text{Transversity}} - \underbrace{\stackrel{\uparrow}{\uparrow}}_{H_{1T}}$

STAR Measurements	Mechanisms
Jet asymmetry, $\langle k_T \rangle$ via dijet, W/Z asymmetry	Sivers function f_{1T}^{\perp}
Hadron in jet asymmetry	Transversity h_1 + Collins function H_1^{\perp}
Di-hadron asymmetry	Transversity h_1 + IFF H_1^{\checkmark}
Hyperon spin transfer	Transversity h_1 + Polarized FF H_1
$\Lambda(\overline{\Lambda})$ in jet polarization	Polarizing FF D_{1T}^{\perp}

STAR

Relativistic Heavy Ion Collider (RHIC)

- The world's only machine capable of colliding high-energy polarized protons
- Beam can be either transversely or longitudinally polarized at \sqrt{s} = 200 GeV or 500/510 GeV

The Solenoidal Tracker At RHIC (STAR)

> Transversely polarized pp collision data relevant to this talk

Year	2011	2012	2015	2017
\sqrt{s} (GeV)	500	200	200	510
$L_{int} (pb^{-1})$	25	22	52	350
Polarization	53%	57%	57%	55%

• Similar x region but high Q², which is not probed by prior experiments 30/3/2025

- Time Projection Chamber (TPC)
 - $|\eta| < 1$ and $\phi \in [0, 2\pi]$
 - Main detector for tracking and PID
- Time Of Flight (TOF)
 - $|\eta| < 1.0 \text{ and } \phi \in [0, 2\pi]$
 - Improve PID of tracks
- ElectroMagnetic Calorimeter
 - BEMC: $|\eta| < 1.0$ and $\phi \in [0, 2\pi]$.
 - EEMC: $1.08 < \eta < 2.0$ and $\phi \in [0, 2\pi]$
 - Reconstruction of photon, e, π^0 and triggering

Transverse Single Spin Asymmetry of Jet

$> A_N$ for π^{\pm} tagged inclusive jet

 π^{\pm} tagged to enhance quark jet fraction

- Sensitive to twist-3 correlators associated with the gluon Sivers function
- Consistent with zero within uncertainty

Sivers Effect in Dijet production

Intrinsic k_T produce a "tilt" of the dijet opening angle

- Asymmetry can be probed via the signed opening angle ζ
- Jet Charge (Q) of the associated jets to enhance the fraction of u-quarks and d-quarks
- Converting the $\Delta \zeta$ asymmetry to $\langle k_T \rangle$ using model
- Inverting the Q-tagged $\langle k_T \rangle$ to individual parton $\langle k_T \rangle$ 30/3/2025

Average transverse momentum $\langle k_T \rangle$ for individual partons

• First time that nonzero Sivers signals in *pp* dijet production are observed

•
$$2\langle k_T^u \rangle \approx \langle k_T^d \rangle \qquad \langle k_T^{g+sea} \rangle \sim 0$$

8

Asymmetry of weak bosons

> Preliminary results of $W/Z A_N$ from run17 data at \sqrt{s} = 510 GeV

• Test sign change of Sivers function from SIDIS and Drell-Yan:

 $f_{h/q^{\uparrow}}^{SIDIS}(x,k_T,Q^2) = -f_{h/q^{\uparrow}}^{p+p \to DY}(x,k_T,Q^2)$

- In general, the results and theoretical calculations are consistent
- Provide input to extraction of the Sivers function, especially for valance quarks at high $x (x \ge 0.1)$
- Run 22 data will further reduce the statistical uncertainty and push to larger rapidity $y^{W/z}$

Collins Asymmetry of Hadron in Jet

Extraction of Collins asymmetry of hadron in jet

$$\frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \propto h_{1}(x) \otimes H_{1}^{\perp} \sim \begin{array}{c} A_{UT} \otimes \sin(\phi_{S}) \\ +A_{UT}^{\sin(\phi_{S} - \phi_{H})} \sin(\phi_{S} - \phi_{H}) \\ +A_{UT}^{\sin(\phi_{S} - 2\phi_{H})} \sin(\phi_{S} - 2\phi_{H}) \end{array}$$

Sensitive to transversity and Collins function

STAR, Phys. Rev. D 97, 032004 (2018)U. D'Alesio *et al*, Phys. Rev. D 83, 034021 (2011)

Model calculations

- Apply a mixture factorization
- Global analyses from SIDIS and e^+e^- annihilation

 $sin(\phi_s)$

 Test universality of Collins fragmentation functions for different processes

10

Collins Asymmetry of Hadron in Jet

- Nicely align with jet x_T & hadron j_T scale, giving almost no energy dependence.
- Provide important constraints on the TMD evolution

> Collins asymmetry vs. pion j_T of 200GeV & 510GeV

30/3/2025

Probing Transversity in Dihadron Production

Results of di-hadron asymmetry in pp collisions

- Run17 results are consistent with Run11 results • with much high precision
- Enhancement around the ρ mass ٠

$\Lambda(\overline{\Lambda})$ Hyperon Spin Transfer D_{TT}

٠

> Transverse spin transfer D_{TT}

$$D_{TT}^{\Lambda} \equiv \frac{d\sigma[p^{\uparrow(\downarrow)}p \to \Lambda^{\uparrow(\downarrow)}X] - d\sigma[p^{\uparrow(\downarrow)}p \to \Lambda^{\downarrow-(\uparrow)}X]}{d\sigma[p^{\uparrow(\downarrow)}p \to \Lambda^{\uparrow(\downarrow)}X] + d\sigma[p^{\uparrow(\downarrow)}p \to \Lambda^{\downarrow-(\uparrow)}X]} = \frac{d\delta\sigma^{\Lambda}}{d\sigma^{\Lambda}}$$

Related to transversity h_1 and polarized FF H_1

- Direct probe of the transversely polarized fragmentation function H_1
- First measurement of D_{TT} vs. z of $\Lambda(\overline{\Lambda})$
- Λ and $\overline{\Lambda}$ are consistent with each other within uncertainties
- Indicate small polarized FF and/or small transversity of the strange quark and antiquark inside the proton

$\Lambda(\overline{\Lambda})$ Polarization inside Jet

- First measurements of polarization of $\Lambda(\overline{\Lambda})$ within jet in unpolarized *pp* collisions at \sqrt{s} = 200 GeV
- Significant nonzero polarization signals were observed
- Test of universality of polarizing FF with e^+e^- data

π^0 Asymmetry in Forward Region

30/3/2025

 Magnitude of inclusive EM jet asymmetry is limited

- Collins asymmetry of π⁰ inside EM jet is consistent with zero
- The A_N of the isolated π^0 was found to be significantly larger than that for non-isolated ones
- Indicating the possible contribution from the **diffractive process**

15

Diffractive Electromagnetic Jets Asymmetry

- $p^{\uparrow} + p \rightarrow p + \text{EM-jet} + X$
- 1 east roman pots (RP) track , no requirement on west RP
- 1 EM-jet per event is allowed
- Rapidity gap event

- $p^{\uparrow} + p \rightarrow p + p + \text{EM-jet} + X$
- No RP track requirement
- 1 EM-jet per event is allowed

- The single diffractive and rapidity gap EM-jet A_N are consistent within uncertainty
- The observed inclusive π^0 asymmetry is unlikely to originate from diffractive processes

Outlook

→ STAR Forward Detector Upgrade (2.5 < η < 4)

Tracking system & calorimetry system

- Successfully collected pp data at 510 and 200GeV during 2022 and 2024
- *x* extends up to ~0.5, with charged particle tracking and electromagnetic and hadronic calorimetry
- Complement the kinematic coverage of ep data from the EIC

Year	2022	2024
\sqrt{s} (GeV)	510	200
$L_{int} \left(pb^{-1} \right)$	400	~170
Polarization	52%	53% / 57%

Summary

- Sivers Effect Breakthrough: First observation of non-zero k_T signal in pp via dijet analysis confirms initial-state spin-momentum correlations; W/Z boson asymmetries constrain process-dependent sign reversal
- Collins Effect & Transversity Probing: Energy-independent Collins asymmetries (200/510 GeV) indicate a weak TMD evolution; Hadron-in-jet asymmetries and dihadron correlations jointly constrain transversity h_1 , testing universality compared with SIDIS and e^+e^- results
- **Polarizing / Polarized FF Constraints**: First pp measurement of $\Lambda(\overline{\Lambda})$ polarization in jets probes polarizing FF D_{1T}^{\perp} ; Hyperon spin transfers provide a direct probe of the transversely polarized fragmentation function H_1
- **Beyond-TMD Mechanisms**: Isolated π^0 asymmetries exclude diffractive dominance, suggesting other mechanism, such as higher-twist effect
- Technology Advances: Established pp collisions as precision tool for 3D nucleon structure; Developing techniques bridge to EIC-era TMD studies