

The Beam Energy Scans at RHIC: Results from BES-I Prospects for BES-II

STAR

34th Reimei Workshop J-PARC, Tokai, Japan

Slide 1 of 31

Beam Energy Scan I (2010-2011, and 2014)

Exploring the Phase Diagram of QCD Matter

	Wha	at was known prior to the RHIC Bea	am Energy Scan Program?				Chemical	Pred.
	1)	High Energy Heavy-ion Collisions	partonic matter			Energy	Potential	Temp.
	2)	Highest energies \rightarrow transition is a	cross over			(GeV)	μ_{B}	(MeV)
	3)	At increased μ_{B} , there might be a	first-order phase transition	L	HC	2760.0	2	166.0
_	4)	And if so, there should be a critica	l point	R	HIC	200.0	24	165.9
		کے کے کہ 🙀 🕹 کو 🕹 کے 👌 Quark-Gluon Plasma		R	RHIC	130.0	36	165.8
	300			R	HIC	62.4	73	165.3
		일 을 📕 39 GeV 💊 🛛 🛛 BES program searc	BES program searches for:	R	HIC	39.0	112	164.2
	500	17 <i>° Y</i> . 🔪 I	• Turn-off of OGP signatu	res R	HIC	27.0	156	162.6
		💋 27 GeV 🕺	• First order phase transi	tion R	HIC	19.6	206	160.0
5		🔰 🛛 👸 19.6 GeV 🍇	Critical point	S	PS	17.3	229	158.6
Me		14.5 GeV		R	RHIC	14.5	262	156.2
lre (200	11.5 GeV	2010: 62.4. 39. 11.5.	. 7.7 S	PS	12.4	299	153.1
ratu		🖌 🔰 🖉 7.7 GeV	2011 19 6 27 GeV	R	RHIC	11.5	316	151.6
ope			2011. 19.0, 27 Gev	S	PS	8.8	383	144.4
Ten		inical poly	2014: 14.5 GeV	R	HIC	7.7	422	139.6
	100			S	PS	7.7	422	139.6
	100	COLOR STRICT	Color Super	S	PS	6.4	476	131.7
		Minetic Freeze-out	conductor	А	AGS	4.7	573	114.6
		Hadronic Gas		А	AGS	4.3	602	108.8
				А	AGS	3.8	638	100.6
	0			А	AGS	3.3	686	88.9
		0 250 500 750	1000	А	\GS	2.7	752	70.4
		Baryon Chemical Potentia	Iμ _B (MeV)	S	IS	2.3	799	55.8

Daniel Cebra 08/August/2016

34th Reimei Workshop J-PARC, Tokai, Japan

Setting the Scene

Daniel Cebra 08/August/2016

34th Reimei Workshop J-PARC, Tokai, Japan

Disappearance of QGP Signatures - R_{CP}

• R_{CP} for hadrons and for identified particles can provide a measure of partonic energy loss in the medium.

1.5

0.5

RAA

• Clear evidence of suppression at the higher collsions energies

 No evidence of high p_T suppression below
14.5 GeV → necessary,
but not suffiicient

Other QGP Signatures:

- •Elliptic flow of phi meson
- •Balance Functions
- •v₂of particles and anti-particles
- •Chiral Magnetic effect
- •Third harmonic of flow

STAR

Daniel Cebra 08/August/2016

34th Reimei Workshop J-PARC, Tokai, Japan 10

Chiral Phase Transition

08/August/2016

34th Reimei Workshop J-PARC, Tokai, Japan

Slide 6 of 31

Search for 1^{st} Order Phase Transition – v_1

Search for the Critical Point – $\kappa\sigma^2$

BES Phase I – What have We Learned

 \bullet The BES at RHIC spans a range of μ_{B} that could contain features of the QCD phase diagram.

• Signatures consistent with a parton dominated regime either disappear, lose significance, or lose sufficient reach at the low energy region of the scan.

• Dilepton mass spectra show a broadening consistent with models including hadron gas and quark-gluon plasma components

•There are indicators pointing towards a softening of the equation of state which can be interpreted as evidence for a first order phase transition.

• The higher moment fluctuation is sensitive to critical phenomena, but these analyses place stringent demands on the statistics.

• Open questions: Lambda polarization and Chiral Magnetic effects

The Spinning Plasma – Lambda Polarizations

- Lambdas reveal their polarization through decay topology
- Polarization expected through "vortical alignment with the event angular momentum vector
- Polarization expected magnetic alignment with the event magnetic field
- These effects can be disentangled looking at Lambdas and anti-Lambdas
- ➔ Two weeks of Au+Au at 27 GeV approved for 2018

➔ Goal is a definative measurement of the magnetic alignment effect

34th Reimei Workshop J-PARC, Tokai, Japan

Slide 10 of 31

Chiral Magnetic Effect

34th Reimei Workshop J-PARC, Tokai, Japan

Chiral Magnetic Wave

$$A_{\pm}\equiv rac{N_{+}-N_{-}}{N_{+}+N_{-}}$$

Daniel Cebra 08/August/2016

34th Reimei Workshop J-PARC, Tokai, Japan

Tests of Chiral Magnet Effects with Isobar Run

Calculations: X.-G. Huang and W.-T. Deng

Use parameterization to convert CME calculation for Ru and Zr into expected signal

dashed: Woods-Saxon case 1 solid: Woods-Saxon case 2

•Large uncertainties in interpretation exist: *Current CME measurements could be entirely from background*

•There remain analyses to be done that are likely to provide some help in clarifying the relevance of CME but, *none so far have proven to be decisive*

• > seven weeks of isobars approved for 2018

Daniel Cebra 08/August/2016

34th Reimei Workshop J-PARC, Tokai, Japan

Slide 13 of 31

Studying the Phase Diagram of QCD Matter at RHIC

11.5 GeV

A STAR white paper summarizing the current understanding and describing future plans

01 June 2014

Beam Energy Scan II (2019-2020)

Select the most important energy range → 5 to 20 GeV

Improve significance→Long runs, higher luminosity

Refine the signals→ Detector improvements

Daniel Cebra 08/August/2016

34th Reimei Workshop J-PARC, Tokai, Japan

Comparison of Facilities

Facilty	RHIC BESII	SPS	NICA	SIS-100	J-PARC HI		
Exp.:	STAR +FXT	NA61	MPD + FXT	СВМ	JHITS		
Start:	2019-20	2009	2020 2017	2022	2025		
Energy: √s _{NN} (GeV)	7.7– 19.6 3.0-7.7	4.9-17.3	2.7 - 11 2.0-3.5	2.7-8.2	2.0-6.2		
Rate: At 8 GeV	100 HZ 2000 Hz	100 HZ	<10 kHz	<10 MHZ	100 MHZ		
Physics:	CP&OD	CP&OD	OD&DHM	OD&DHM	OD&DHM		
	Collider	Fixed Target	Collider	Fixed Target	Fixed Target		
	Fixed larget	Lighter ion collisions	Fixed larget CP OI DF	^{CP} = Critical Point OD = Onset of Deconfinement DHM = Dense Hadronic Matter			
Daniel Cebra 08/August/2016		34 th Reir J-PARC,	nei Workshop Tokai, Japan	Slide 15 of 31			

Low Energy Electron Cooling at RHIC

J-PARC, Tokai, Japan

Slide 16 of 31

BES Phase II is planned for two 24 cryo-week runs in 2019 and 2020

√S _{NN} (GeV)	7.7	9.1	11.5	14.5	19.6
μ_{B} (MeV)	420	370	315	250	205
BES I (MEvts)	4.3		11.7	24	36
Rate(MEvts/day)	0.25		1.7	2.4	4.5
BES I <i>L</i> (1×10 ²⁵ /cm ² sec)	0.13		1.5	2.1	4.0
BES II (MEvts)	100	160	230	300	400
eCooling (Factor)	4	4	4	3	3
Beam Time (weeks)	12	9.5	5.0	5.5	4.5

Reduction in Errors with Improved Statistics

The STAR Upgrades and BES Phase II

nner 🔳

upgrade

Endcap TOF

iTPC Upgrade:

- Rebuilds the inner sectors of the TPC
- Continuous Coverage
- Improves dE/dx
- Extends η coverage from 1.0 to 1.5
- Lowers p_T cut-in from 125 MeV/c to 60 MeV/c

EndCap TOF Upgrade:

- Rapidity coverage is critical
- PID at forward rapidity
- Improves the fixed target

program

EPD Upgrade:

Event Plane Detector

- Improves trigger
- Reduces background
- Allows a better and independent reaction plane measurement critical to BES physics

08/August/2016

J-PARC, Tokai, Japan

Slide 21 of 31

Fixed-Target Program 3.0 to 7.7 GeV

The Fixed-Target Program will extend the reach of the RHIC BES to higher μ_{B} .

Goals:

- 1) Search for evidence of the first entrance into the mixed phase
- Control measurements for BES collider program searches for Onset of Deconfinement
- Control measurements for Critical Point searches

Baryon Chemical Potential μ_B

Daniel Cebra 08/August/2016

34th Reimei Workshop J-PARC, Tokai, Japan

Slide 22 of 31

Target Design 2014 and 2015

Target design:

Gold foil 1 mm Thick (4%) 1 cm High 210 cm from IR

2014 Parasitic tests (two weeks): ~5000 central Au+Au events 2015 Direct beam tests (few hours): 1.3 Million central Au+Au 3.4 Million central Al+Au

Daniel Cebra 08/August/2016

34th Reimei Workshop J-PARC, Tokai, Japan

Slide 23 of 31

Run 14 and 15 Setup

08/August/2016

J-PARC, Tokai, Japan

Slide 24 of 31

What do the iTPC and eTOF do for Fixed Target?

Daniel Cebra 08/August/2016

34th Reimei Workshop J-PARC, Tokai, Japan

Slide 26 of 31

Verification of Acceptance Maps

Daniel Cebra 08/August/2016

34th Reimei Workshop J-PARC, Tokai, Japan

Daniel Cebra 08/August/2016

34th Reimei Workshop J-PARC, Tokai, Japan

Slide 29 of 31

Physics Goals of the FXT Program

The Onset of Deconfinement:

- •High p_T suppression
- $\bullet N_{CQ}$ scaling of Elliptic Flow
- •LPV through three particle correlators (CME)
- •Balance Functions
- •Strangeness Enhancement

Compressibility -> First Order Phase Transition

- Directed flow
- •Tilt angle of the HBT source
- •The Volume of the HBT source
- •The width of the pion rapidity distributions (Dale)
- •The zero crossing of the elliptic flow (~6 AGeV)
- •Volume measures from Coulomb Potential

Criticality:

- •Higher moments
- •Particle Ratio Fluctuations

Chirality:

•Dilepton studies

Conclusions

- BES Phase I told us the regions of interest
- Collider upgrades improve luminosity
- Detector upgrades extend physics reach
- Fixed-target program will extend reach of BES program

The focused and improved studies of BES Phase II will allow us to define the energy of the onset of deconfinement and allow us to characterize the phases and transitions of QCD matter.

Chiral Vortical Effect

Chiral Magnetic Effect vs Chiral Vortical Effect

Chirality Imbalance (μ_A) Magnetic Field $(\omega \mu_e)$ Fluid Vorticity $(\omega \mu_B)$ \downarrow Electric Charge (j_e) Baryon Number (j_B)

D. Kharzeev, D. T. Son, PRL 106 (2011) 062301

$$\langle \cos(\phi_{\Lambda} + \phi_{\mathbf{p}} - 2\Psi_{RP}) \rangle$$

correlate Λ -p to search for the Chiral Vortical Effect

34th Reimei Workshop J-PARC, Tokai, Japan

Slide 34 of 31

Hypernuclei

Perfect energy range to map out the production of ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H

Previously only measured at two energies

Dynamic range will exclude searches for doubly strange hypernuclei

34th Reimei Workshop J-PARC, Tokai, Japan

Slide 35 of 31