Hadronic Resonances from STAR

Masayuki Wada For the STAR Collaboration

Outline

- Motivation and Introduction
- Hadronic decay channel (Mass & Width,

Yield Ratio, $\langle p_T \rangle$)

- Leptonic decay channel
- Conclusions

Resonances In Medium

Resonances In Medium

Resonances In Medium

STAR Detector

Time Projection Chamber (TPC)

- full azimuth, |η| < 1
- Momentum & dE/dx

Time of Flight System (TOF)

- full azimuth, |η| < 0.9
 ~70% (2009)
 ~100% (2010)
- Velocity (particle identification)

Resonance Particles

•
$$\rho^0 (\rightarrow \pi^+ \pi^-)$$
, $K^* (\rightarrow \pi K)$, $\phi (\rightarrow K^+ K^-)$, $\Sigma^* (\rightarrow \pi \Lambda)$, $\Lambda^* (\rightarrow Kp)$

 Hadronic resonances are measured in STAR from various colliding systems (p+p, d+Au, Cu+Cu, and Au+Au) and colliding energies (62.4, 200 GeV).

Resonance	Lifetime [fm/c]	decays (BR)
ρ ⁰ (770)	1.3	π + π , e ⁺ +e ⁻ (10 ⁻⁵)
K* (892)	4.0	π+K
φ (1020)	44	K+K, $e^{+}+e^{-}(10^{-4})$
Σ*(1385)	5.7	Λ + π
Λ*(1520)	13	Λ+π

ρ⁰ (770) Mass & Width

 ρ^{0} fit w/ relativistic Breit-Wigner func. times phase space factor

- ρ^0 mass shifted at low p_T by ~30 MeV/c².
- Same mass shifts in all collision systems and energies (200 & 62.4 GeV)
- Detector effect may be not fully accounted in the simulation.
- Width is fixed.

K*(892) Mass & Width

- Mass shifts at low p_T by ~6-15 MeV/c²
 - Consistent within 2 sigma level
- p+p and Au+Au have same trends
 →medium effect?
- No width broadening
- Detector effect may be not fully accounted in the simulation.

K*(892) Mass & Width

- Mass shifts at low p_T by ~6-15 MeV/c²
 - Consistent within 2 sigma level
- p+p and Au+Au have same trends
 medium effect?
- No width broadening
- Detector effect may be not fully accounted in the simulation.

Different Collision systems & energies

No dependence of mass and width within the errors on beam energy and colliding ion species

φ(1020) Mass & Width

3/6/12

- At low $p_{T, \phi} \phi$ mass is lower and width is larger than from simulation.
- No significant dependence of mass and width on beam energy and colliding ion species
- Detector effect may be not fully accounted in the simulation.

φ(1020) in Cu+Cu

Λ*(1520) & Σ*(1385) Mass & Width

• Mass & width of Λ^* and Σ^* are in agreement with the PDG values within errors.

Phys. Rev. Lett. 97, 132301 (2006)

• Flat K*
$$\langle p_T \rangle$$

 \rightarrow low p_T daughters are re-scattered in medium

→ p_T distribution shifts to higher p_T

Yield Ratio

$$ρ^0$$
→π⁺π⁻, K^{*}→πK, φ→K⁺K⁻, Σ^{*}→πΛ, Λ^{*}→Kp

 K*/K⁻ suppressed with centrality

→re-scatt.($\sigma_{\pi\pi}$) > re-gen. ($\sigma_{\pi K}$)

•
$$\rho^0 \& \phi$$
 no suppression

→re-scatt. = re-gen.

Λ* suppressed most

Phys. Rev. Lett. 97, 132301 (2006) Phys. Lett. B 673, 183 (2009) Phys. Rev. C 84, 034909 (2011)

Λ(1520) +Ā(1520) in Cu+Cu 200GeV

Λ(1520) +Ā(1520) in Cu+Cu

Λ(1520) +Ā(1520) in Cu+Cu

φ & ω in Leptonic Decay Channel

Electron Identification

With New TOF Detector

φ(1020) Signal

Mass & Width in p_T Bins

Mass and width are in agreement with the simulation. →No mass shifts or width broadenings

STAR SQM2011

Corrected $\phi(1020)$ Spectrum

3/6/12

Comparison to Hadronic Decay

ω Signal

STAR QM11

Fit $\boldsymbol{\omega}$ by two components

 $\boldsymbol{\omega}$ Invariant shape from the cocktail simulation

Green line: the cocktail without $\boldsymbol{\omega}$

ω**→e⁺e⁻Spect**ra

- ω→e⁺e⁻ spectra measured in p+p and Au+Au 200 GeV
 - Yield consistent with Tsallis fit expectations
 - Applies to p+p
- dN/dy of ω consistent with previous measurements

Tsallis Blast-wave(TBW) fit:

T=96.4 MeV, q = 1.0926 for mesons $<\beta>=0$ in p+p, T=117 MeV, q = 1.0416 $<\beta>=0.47$ in 0-80% AuAu.

(q is a parameter characterizing the degree of nonequilibrium) **Z.Tang et al., arXiv:1101.1912**

Summary

- In STAR, ρ_0 , K^{*}, ϕ , Σ^* , Λ^* are measured in various colliding species and colliding energies.
- Masses and widths of those resonances are presented. No significant mass shifts or width broadening are observed.
- $\langle p_T \rangle$ and yields ratios are presented.
 - In most central, the K* $\langle p_T \rangle$ agree to the $\langle p_T \rangle$ of non-resonance particle. However, in peripheral bin, the K*⁰ $\langle p_T \rangle$ shows enhancement.
 - Double ratio of K*/K & A*/A ylleds show suppression with centrality possibly due to re-scattering of daughters in hadronic medium.
- New measurements of φ and ω from leptonic decay channels are presented.
 We couldn't see any difference between results from leptonic decay channel and from hadronic decay channel.
- No signature of the Chiral symmetry restoration is observed.

Back Up

Medium Effects

- Re-scattering: loss of signal ∝o_{daughter-medium}
 - Re-generation:

yields $\propto \sigma_{\text{daughter-daughter}}$

Estimate time span between chemical and kinetic freeze out.

The Chiral Symmetry Restoration

The Chiral Restoration Transition of QCD and Low Mass Dileptons. Stock, R. (ed.). SpringerMaterials

Search for evidence of chiral symmetry restoration

- Masses of ρ→e+e- and φ→e+emay broaden/shift
- Relative production rates of φ→ e+e- and φ→K+K- may change...

Back Up

Mean p_T Distributions

The $\langle p_T \rangle$ of π , K, \overline{p} and K* is taken from STAR published results.

ρ⁰ in p+p, Au+Au 200 GeV: Phys. Rev. Lett. 92 (2004) 92301 ρ⁰ in d+Au 200 GeV: Phys. Rev. C 78 (2008) 44906

- For p⁰ in Cu+Cu only statistical error.
- ρ^0 mean p_T slightly increases with N_{part} .
- ρ^0 mean p_T comparable with proton mean p_T .

Particle Ratios

K*/K⁻ ratio is obtained From STAR published results.

- Cross-section \Rightarrow regeneration or re-scattering.
- $K^*/K^- \Rightarrow$ re-scattering of the daughters.
- ρ⁰/π⁻ ⇒ regeneration compensating re-scattering of the daughters.

Transverse Momentum Bins

Mean Transverse Momentum

Interactions of resonances in hadronic medium

K*(892) (cont'd)

- At low p_T, masses are lower than PDG value
- No significant dependence of mass and width on beam energy and colliding ion species