

Results from the Relativistic Heavy Ion Collider Beam Energy Scan II

Central China Normal University

The 11th workshop of the APS Topical Group on Hadronic Physics, Mar. 14-16, 2025

Motivation

Experimental Setup

Selected Results

Outline

QCD Phase Diagram

A. Bzdak et al., Phys. Rept. 853, 1 (2010); X. Luo, S. Shi, Nu Xu and Y. Zhang, Particle 3, 278 (2020)

Experimental Setup

Au+Au Collisions at RHIC											
Collider Runs						Fixed-Target Runs					
	√ S_{NN} (GeV)	#Events	μ_B	Ybeam	run		√ S _{NN} (GeV)	#Events	μ_B	Y _{beam}	run
1	200	380 M	25 MeV	5.3	Run-10, 19	1	13.7 (100)	50 M	280 MeV	-2.69	Run-21
2	62.4	46 M	75 MeV		Run-10	2	11.5 (70)	50 M	320 MeV	-2.51	Run- <mark>21</mark>
3	54.4	1200 M	85 MeV		Run-17	3	9.2 (44.5)	50 M	370 MeV	-2.28	Run-21
4	39	86 M	112 MeV		Run-10	4	7.7 (31.2)	260 M	420 MeV	-2.1	Run-18, 19, 20
5	27	585 M	156 MeV	3.36	Run-11, 18	5	7.2 (26.5)	470 M	440 MeV	-2.02	Run-18, 20
6	19.6	595 M	206 MeV	3.1	Run-11, 19	6	6.2 (19.5)	120 M	490 MeV	1.87	Run-20
7	17.3	256 M	230 MeV		Run-21	7	5.2 (13.5)	100 M	540 MeV	-1.68	Run-20
8	14.6	340 M	262 MeV		Run-14, 19	8	4.5 (9.8)	110 M	590 MeV	-1.52	Run-20
9	11.5	57 M	316 MeV		Run-10, 20	9	3.9 (7.3)	120 M	633 MeV	-1.37	Run-20
10	9.2	160 M	372 MeV		Run-10, 20	10	3.5 (5.75)	120 M	670 MeV	-1.2	Run-20
11	7.7	104 M	420 MeV		Run-21	11	3.2 (4.59)	200 M	699 MeV	-1.13	Run-19
						12	3.0 (3.85)	260 + 2000 M	760 MeV	-1.05	Run-18, 21

Most precise data to map the QCD phase diagram $3 < \sqrt{s_{NN}} < 200 \text{ GeV}; 760 > \mu_B > 25 \text{ MeV}$

Motivation: Light Nuclei Production

L. P. Csernai and J. I. Kapusta, Phys. Rept. 131, 223 (1986); A. Andronic et al, Nature 561, 321 (2018); J. Chen et al., Phys. Rept. 760, 1 (2018); K.-J. Sun et al., arXiv:2207.12532

 $\times f_A(\mathbf{x}'_1,...,\mathbf{x}'_A;\mathbf{p}'_1,...,\mathbf{p}'_A)\delta^{(3)}\left(\mathbf{P}_A-\sum_{i=1}^A\mathbf{p}_i\right)$

Thermal emission; Nucleon coalescence; Hadronic re-scattering ($\pi NN \Rightarrow \pi d \dots$)

> Abundant in the high baryon density, unclear production mechanisms

Neutron Density Fluctuation

Figure courtesy of Kai-Jia Sun

Neutron Density Fluctuations

Nucleon coalescence: nuclear compound yield ratio is sensitive to the baryon density fluctuations and can be used to probe phase transition signal in HIC

K.-J. Sun et al., PLB 781, 499 (2018); E. Shuryak and J. M. Torres-Rincon, PRC 101, 034914 (2020); K.-J. Sun et al., arXiv:2207.12532

Good particle identification capability based on TPC dE/dx and TOF m²

p_T Spectra of Light Nuclei

STAR, PRC 110, 054911 (2024)

9

> Mid-rapidity transverse momentum spectra for light nuclei in 3 GeV collisions

Thermal model well describes ALICE data, overestimates N_t/N_p below LHC energy

The effects of hadronic re-scatterings during hadronic expansion may play an important role

K.-J. Sun et al., Nature Commun.15,1074(2024); FOPI, NPA 781, 459 (2007); E864, PRC 61, 064908 (2000); ALICE, PRC 93, 024917 (2016); PHENIX, PRL 94, 122302 (2005), PRC 69, 034909 (2004) $N_t \times N_p / N_d^2$

- Non-monotonic behavior observed from 0%-10% central Au+Au collisions around 19.6 and 27 GeV
- The yield ratio in peripheral collisions exhibits a monotonic trend and can be well described by coalescence models within uncertainties

Comparison to Models

Production mechanism of light nuclei

- ➤ 7.7 200 GeV: well described by nucleon coalescence model
- ➤ 3 GeV: consistent with thermal model, coincidence?
- > The increasing trend of the yield ratio below 4 GeV, cannot be explained by models

Anisotropic Flow

Motivation: Anisotropic Flow

*v*₁ is sensitive to the Equation-of-State (EoS)
 *v*₂ is sensitive the degree of freedom: partonic vs. hadronic

S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998)

Anti-flow of Meson v₁

➢Bounce-off: Positive flow in positive rapidity
 ➢Au+Au 3.83 GeV: Anti-flow of kaon at low pT (< 0.7 GeV/c) → Kaon potential?

Elliptic Flow

STAR, Phys. Rev. Lett. 92, 052302 (2004)

STAR, Phys. Rev. Lett. 118, 212301 (2017)

STAR, Phys. Rev. Lett. 110, 142301 (2013) Phys. Rev. C 93, 14907 (2016), Phys. Lett. B 827, 137003 (2022)

Rapidity Dependence of v₁

STAR: CPOD2024, SQM2024

Measurements of v1 vs. rapidity for π^{\pm} , K^{\pm} , K^{0}_{S} , p, Λ at 3.0, 3.2, 3.5, and 3.9 GeV

Anti-flow of Kaons

>3.9 GeV: anti-flow observed for K_S⁰ at pT < 0.7 GeV/c
> Positive directed flow slope of K_S⁰ at pT > 0.7 GeV/c
Strong p_T dependence of K_S⁰ v1 slope

p_T Dependence of v₁ Slope

STAR: CPOD2024, SQM2024

Anti-flow of π^+ and K_S^0 , K^{\pm} at low pt

➢Anti-flow could be explained by shadowing effect from spectators

Model study: Z. Liu and S. Shi, Phys. Rev. C 110, 034903 (2024)

Energy Dependence of v₁ Slope

≻v₁ slope of baryons drops as collision energy increases

➢JAM with baryonic Mean Field better describes data

Mean field potential plays important role

p_T Dependence of v_2 at 3 - 4.5 GeV (③ 羊牛師範太琴

➢ JAM + baryonic Mean Field better describe the 3.2 GeV while underestimate 4.5 GeV data

Baryonic Mean Field: p dependent Soft EoS, the nuclear incompressibility K = 210 MeV

- > At 3 GeV, the measured midrapidity v_2 for all particles are negative and NCQ scaling is absent
- Equation-of-State dominated by baryonic interactions
 - \rightarrow The hadronic degree of freedom dominates

NCQ scaling of v_2 at 3 - 4.5 GeV

- ➢ NCQ scaling completely breaks below 3.2 GeV
- ➢ NCQ scaling becomes better gradually from 3 .2 to 4.5 GeV

Energy dependence of <v₂>

Negative to positive flow: $3 \rightarrow 4.5 \text{ GeV}$

The NCQ-scaled v_2 ratio of p/K⁺ is close to 1 at 3.9 and 4.5 GeV, while it deviates largely from 1 at 3.2 GeV

High Moments

Conserved Charges: Net Baryon, Net Charge, Net Strangeness

Sensitive to correlation length

Related to system **susceptibility**

Moments, cumulants and susceptibilities:

2nd order: $\sigma^2/M \equiv C_2/C_1 = \chi_2/\chi_1$ 3rd order: S $\sigma \equiv C_3/C_2 = \chi_3/\chi_2$ 4th order: $\kappa\sigma^2 \equiv C_4/C_2 = \chi_4/\chi_2$

S. Ejiri et al, Phys.Lett. B 633, 275 (2006). Cheng et al, PRD 074505 (2009). B. Friman et al., EPJC 71, 1694 (2011). F. Karsch and K. Redlich , PLB 695, 136 (2011). S. Gupta, et al., Science, 332, 1525 (2012). A. Bazavov et al., PRL109, 192302 (2012); PRD95, 054504 (2017). S. Borsanyi et al., PRL111, 062005 (2013)

Net-proton Cumulants

Higher precision than BES-I

Energy Dependence

All proton factorial cumulant ratios show non-monotonic dependence
 Lattice QCD describe the data up to 27 GeV.

HRG CE: P .B. Munzinger et al. Nucl. Phys. A1008, 122141(2021); Hydro: HRG CE + EV, V. Vovchenko et al., Phys. Rev. C105, 014904 (2022). LQCD: A. Bazavov et al., Phys. Rev. D101, 074502 (2020). arXiv : 2407.09335

CP Search

Energy gap between 3 and 7.7 GeV : important for Critical Point search
 Dynamical modelling is needed to fully understand the data

STAR: PRL126, 92301(2021); PRC104, 024902 (2021); PRL128, 202303(2022); PRC107, 024908 (2023) HADES: PRC102, 024914(2020)

Summary

Light nuclei production

- \succ N_t×N_p/N_d² at 19.6 and 27 GeV from 0-10% central collisions show 4.1 σ enhancement to the coalescence baseline
- > The yield ratio can serve as a tool for investigating the production mechanism.

Collective flow

→ Anti-flow for K_S^0 , K^{\pm} and π^+ observed at low pT ($\leq 0.6 \text{ GeV/c}$)

Spectator shadowing effect is important at high baryon density region

NCQ scaling breaks at 3.0 and 3.2 GeV, and gradually restores from 3.0 to 4.5 GeV Dominance of partonic interactions at 4.5 GeV

High moments

- ➢ Need to understand the reason lead to the deviations around 20 GeV
- Need reliable dynamical modeling and non-CP baselines

Outlook

- ➢ Higher statistics, better detector performance and more energy points in BES-II
- Explore the QCD phase diagram

Stay tuned for more new results!

Thank you!