## Charge-dependent flow in Cu+Au collisions

### Takafumi Niida for the STAR Collaboration Wayne State University







#### Contents

▶ Why interesting ? : Cu+Au collisions

Charge-dependent directed flow

Higher-order flow vn

- d+Au collisions @ 200 GeV
- U+U collisions @ 193 GeV
- He<sup>3</sup>+Au collisions @ 200 GeV
- ø p+Au collisions @ 200 GeV ← this run

- d+Au collisions @ 200 GeV
- U+U collisions @ 193 GeV
- He<sup>3</sup>+Au collisions @ 200 GeV
- p+Au collisions @ 200 GeV
- p+Al collisions?



- d+Au collisions @ 200 GeV
- U+U collisions @ 193 GeV
- He<sup>3</sup>+Au collisions @ 200 GeV
- p+Au collisions @ 200 GeV
- p+Al collisions?



#### Successfully run unique collisions by flexibility of RHIC

- d+Au collisions @ 200 GeV
- U+U collisions @ 193 GeV
- He<sup>3</sup>+Au collisions @ 200 GeV
- p+Au collisions @ 200 GeV
- p+Al collisions?



asymmetric density profile asymmetric pressure gradient

- d+Au collisions @ 200 GeV
- U+U collisions @ 193 GeV
- He<sup>3</sup>+Au collisions @ 200 GeV
- p+Au collisions @ 200 GeV
- p+Al collisions?



asymmetric density profile asymmetric pressure gradient



#### Successfully run unique collisions by flexibility of RHIC

- d+Au collisions @ 200 GeV
- U+U collisions @ 193 GeV
- He<sup>3</sup>+Au collisions @ 200 GeV
- p+Au collisions @ 200 GeV
- p+Al collisions?



asymmetric density profile asymmetric pressure gradient





dipole-like charge distribution by spectators

## Why interesting? - Cu+Au collisions -

- Sizable E-field pointing from Au to Cu, due to different number of protons in both spectators
- Expect charge separation of directed flow due to a dipole deformation
  - Electric conductivity of QGP? (PRC90.021903)
  - Would be sensitive to the quark/anti-quark creation time (a life time of E-field ~0.25 fm/c) (PRC90.064903)
- Higher-order flow would be also interesting to study n/s with hydrodynamic models under asymmetric pressure gradient
   PLB717(2012)287



E-field from PHSD, PRC90.064903 (Parton-hadron string dynamics)



### Solenoidal Tracker At RHIC

EEMC

▶ Trigger detectors: VPD, ZDC (detecting spectator neutrons)
 ▶ Tracking of charged particles: TPC (|n|<1)</li>
 ▶ Event planes: ZDC-SMD(|n|>6.3), TPC, EEMC (1<n<2)</li>

 $\models \mathbb{R}$ 

TPC

BBC

VPD

## vn measurements

#### Event plane method

- $\Psi_1$  determined by ZDC-SMD measuring spectator neutrons
- $\Psi_n$  (n>1) determined by TPC( $\eta$ -sub) and EEMC

$$v_n = \left\langle \cos\left[n\left(\phi - \Psi_n\right)\right]\right\rangle$$
$$\Psi_n = \frac{1}{n} \tan^{-1}(Q_{n,y}/Q_{n,x})$$
$$Q_{n,x} = \Sigma w_i \cos(n\phi)$$
$$Q_{n,y} = \Sigma w_i \sin(n\phi)$$

- Scalar product method

$$v_n = \frac{\langle \vec{Q}_n^{F(B)} \cdot \vec{u} \rangle}{\sqrt{\langle \vec{Q}_n^F \cdot \vec{Q}_n^B \rangle}}$$

- Systematic uncertainty
  - variation of track selection
  - For v<sub>1</sub>, EP resolutions from different 3-sub events
  - ${\it \odot}$  For vn, difference between TPC  $\eta$  -sub and EEMC





## Charge-dependent directed flow



Sizable  $v_1^{even}$  measured relative to ZDC-SMD plane in Au-going side, where  $\Psi_1^{Au}>0$ 

• 
$$v_1^{\text{even}} = \langle \cos(\phi - \Psi_1) \rangle$$
  $v_1^{\text{odd}} = \langle sgn(\eta)\cos(\phi - \Psi_1) \rangle$ 

 In Au+Au collisions, v1<sup>odd</sup> ~0.1% (v1<sup>even</sup> would be small because of sign-flipped symmetry on n), which is only due to density fluctuations
 ▶ Negative v1 in pT<1GeV/c: more low pT particles in Cu-side due to asymmetric pressure gradient?

Positive v1 in pT>1GeV/c: more high pT particles in Au-side of due to jet and/or corona by higher initial density in Au-side?



#### v₁ in Au+Au, STAR, PRL101.252301



## Charge-dependent directed flow



▶  $\Delta v_1 = v_1(h^+) - v_1(h^-)$ , and  $v_1 \sim 1\%$ ,  $\Delta v_1 < 0.2\%$ 

- $\Delta v_1$  looks to be negative in p<sub>T</sub><2 GeV/c,
- similar p⊤ dependence to PHSD model (PRC90.064903), but smaller by <u>a factor of 10</u>
- Quarks existing at an earlier time than the life time of E-field (~0.25 fm/c) would be very small
  - consistent with "two wave" scenario of light quark production





10

v2 peaks at more central collisions than Au+Au collisions
 40-50% in Au+Au (and Cu+Cu), 30-40% in Cu+Au





11

▶ v<sub>2</sub> peaks at more central collisions than Au+Au collisions

- ▶ v<sub>3</sub> seems to decrease in more peripheral collisions
  - due to the intrinsic triangularity in addition to fluctuations?





#### PHENIX, PRL107.252301



12

▶ v<sub>2</sub> peaks at more central collisions than Au+Au collisions

- 40-50% in Au+Au (and Cu+Cu), 30-40% in Cu+Au
- ▶ v<sub>3</sub> seems to decrease in more peripheral collisions
  - due to the intrinsic triangularity in addition to fluctuations?
- Finite v<sub>4</sub> is observed
  - weak centrality dependence





13

▶ v<sub>2</sub> peaks at more central collisions than Au+Au collisions

- 40-50% in Au+Au (and Cu+Cu), 30-40% in Cu+Au
- ▶ v<sub>3</sub> seems to decrease in more peripheral collisions
  - due to the intrinsic triangularity in addition to fluctuations?
- Finite v<sub>4</sub> is observed
  - weak centrality dependence
- No charge dependence for vn (n>=2)



# vn{EP} vs vn{SP}



- ▶ vn with scalar product method were measured for check
  - Good agreement with EP-method in central collisions
  - Start to deviate in more peripheral collisions, which can be understood by different sensitivity to non-flow

# Summary

- Charge-dependent directed flow in Cu+Au collisions have been presented
  - The difference between v<sub>1</sub>(h<sup>+</sup>) and v<sub>1</sub>(h<sup>-</sup>) has the same sign and pT dependence as PHSD model prediction, which may be a direct evidence of the predicted initial electric field
  - Δv<sub>1</sub> is much smaller than the model, which indicates the number of (anti-)quarks existing at an earlier time (t<0.25 fm/c) would be a small fraction of all (anti-)quarks produced
  - A quantitative comparison with model is on-going
- ▶ Higher-order flow (v<sub>2</sub>-v<sub>4</sub>) have also been measured
  - v<sub>2</sub> and v<sub>3</sub> look to have slightly different centrality dependence from Au+Au, especially v<sub>3</sub>, which decreases in more peripheral collisions

### Thank you for your attention!

Back up

## v1 in Au+Au 200GeV



Small signal of v1 at mid-rapidity in Au+Au collisions

$$v_1^{\text{odd}} = \langle sgn(\eta)\cos(\phi - \Psi_1) \rangle$$

### E-b-e viscous hydrodynamics in Cu+Au





P. Bozek, PLB717(2012)287

$$v_1^{\text{even}} = \langle \cos(\phi - \Psi_1) \rangle$$
$$v_1^{\text{odd}} = \langle sgn(\eta) \cos(\phi - \Psi_1) \rangle$$