

Measurements of Open Heavy Flavor with the STAR Experiment

Zachariah W Miller for the STAR Collaboration University of Illinois at Chicago

Santa Fe Jets and Heavy Flavor Workshop February 15, 2017

Outline

- Why Heavy Flavor?
- The STAR Detector
- Separating Bottom and Charm
 - Non-photonic electrons
 - Non-prompt D⁰
 - Non-prompt J/Ψ
- D_s and Λ_c Production Measurements
- D⁰ Flow Measurements
- Summary and Outlook

Why Heavy Flavor?

- Large mass predominantly produced in initial hard parton scatterings.
- Long lifetime experience full evolution of medium produced in heavy-ion collisions.
- Mass hierarchy:
 - Comparison of QGP-quark interaction for light flavor, charm and bottom may allow detailed study of collisional and radiative energy losses within medium.
 - Thermalization in medium is mass dependent. Are charm and bottom thermalized?

STAR Detector

Time Projection Chamber (TPC)

Full azimuthal coverage
Uniform acceptance for -1 < η < 1

STAR Detector

Full azimuthal coverage
 Uniform acceptance for -1 < η < 1

STAR Detector Barrel Electromagnetic Calorimeter (BEMC) ∕┨╫╢ Counts (#) **Pure electron sample (conversion)** Au+Au 200 GeV + Like-sign + Unlike-sign electron $E_0 \sim 0.8$ hadron $E_0 \sim 0.5$ E₀ is highest tower in the cluster. E₀/p

Full azimuthal coverage
 Uniform acceptance for -1 < η < 1

STAR Detector

PXL: 2 layers of silicon pixel (MAPS)

- Low material budget, 0.5% * X₀ (2014)
- Excellent resolution
 - Pitch 20.7 μ m x 20.7 μ m
- 2.8 cm and 8 cm from beam
- IST & SSD: Silicon pad/strip detectors
 - Fast signals to remove pileup
 - 14 cm and 22 cm from beam

In use: 2014 - 2016 (R.I.P.)

The improved track pointing resolution with the HFT allows use of DCA to separate individual contributions to inclusive electrons.

Photonic electrons from Dalitz decays and gamma conversions.

Hadron contamination is primarily from pions misidentified as electron candidates.

Zachariah Miller

13

Non-prompt D⁰ Production

- HFT significantly reduces background.
- Use DCA fitting to find $B \rightarrow D^0$ from secondary vertex.

Non-prompt D⁰ Production

$$R_{AA}^{B \to D^{0}} = \frac{1}{\langle N_{coll} \rangle} \frac{f_{Au+Au}^{B \to D^{0}} \times dN_{Au+Au}^{incl. D^{0}}/dp_{T}}{dN_{FONLL}^{B \to D^{0}}/dp_{T}}$$

- No observed centrality dependence for the non-prompt D⁰ fraction.
- Hint that non-prompt D⁰ sees less suppression than inclusive D⁰.

Non-prompt J/Ψ Production

- Extract the J/ Ψ signal then calculate the pseudo proper decay length.
- Template based fitting to $I_{J/\Psi}$ distribution is used to separate the contributions.

Zachariah Miller

Non-prompt J/Ψ Production

$$R_{AA}^{B \to J/\psi} = \frac{f_{Au+Au}^{B \to J/\psi}(data)}{f_{p+p}^{B \to J/\psi}(theory)} R_{AA}^{inc. J/\psi}(data)$$

 Observe strong suppression of B→J/Ψ at high p_T. Similar trend for R_{AA} as D⁰.

Λ_c and D_s Motivation

- Baryon-to-meson ratio and strangeness enhancement observed for light flavors. Attributed to coalescence.
- Coalescence hadronization models predict enhancement of D_s and Λ_c in Au+Au collisions compared to p+p collisions.
- Can help constrain total charm yield.

Λ_c Production

- First measurement of Λ_c in heavy-ion collisions.
- Measured in $\Lambda_c^+ \rightarrow p K^- \pi^+$ channel (BR ~ 6.35%).

Λ_c Production

- Observed an enhancement of Λ_c/D^0 ratio relative to PYTHIA prediction.
 - $\Lambda_c/D^0 = 1.3 \pm 0.3$ (stat) ± 0.4 (sys)
- Model including coalescence and thermalized charm quark is consistent with the data.
- Magnitude of the enhancement is similar to observations for light hadrons.

D_s and D[±] Production

- D_s[±] and D[±] (BR = 0.27%) are reconstructed via [φ(1020) + π] decay channel.
- D[±] also reconstructed in Kππ channel (BR = 9.46%).
 Agreement between channels.

D_s/D^0

SFJHF 17

D^{0} Flow (v₂)

- Multiple methods for determining v₂ agree.
- D⁰ follows with mass ordering at p_T < 2 GeV/c
- D⁰ follows NCQ scaling, suggesting that charm quarks may be just as thermalized as light flavors.

D^{0} Flow (v₂)

Different models:

- SUBATECH: pQCD + hard thermal loop
 - P. B. Gossiaux, J. Aichelin, T. Gousset, and V. Guiho, Strangeness in quark matter
- TAMU: T-matrix, non-perturbative model with internal energy potential
 - M. He, R. J. Fries, and R. Rapp, PRC86, 014903 (2012)
- Duke: free constant D_s, fit to LHC high p_T R_{AA}
 S. Cao, G.-Y. Qin, and S. A. Bass, PRC88, 044907 (2013)
- hydro: A 3D viscous hydrodynamic model
 L.-G. Pang, Y. Hatta, X.-N. Wang, and B.-W. Xiao, PRD91, 074027 (2015)
- PHSD: Parton-Hadron-String Dynamics, a transport model
 - H. Berrehrah et al. PRC90 (2014) 051901
- LBT: A Linearized Boltzmann Transport model
 - S. Cao, T. Luo, G.-Y. Qin, and X.-N. Wang, PRC94, 014909 (2016)

compare with	$2\pi TD_s$	χ2/n.d.f.	<i>p</i> -value
3D viscous hydro	_	3.6/6	0.73
LBT	3-6	11.1 / 8	0.19
PHSD	5-12	8.7 / 7	0.28
TAMU c quark diff.	2-12	10.0 / 8	0.26
SUBATECH	2-4	15.2 / 8	0.06
TAMU no c quark diff.	_	29.5 / 8	2x10-4
DUKE	7	37.5 / 8	2x10-5

D⁰ V₃

- Consistent with NCQ scaling within large error bars.
- Still need more statistics to begin testing models in detail.

Summary

- Separate measurements of B→e and D→e R_{AA} is consistent with mass hierarchy in energy loss(ΔE_c > ΔE_b).
- See strong suppression of $B \rightarrow J/\Psi$ and $B \rightarrow D^0$ in high p_T region.
- Observe significant enhancement in Λ_c/D⁰ and D_s/D⁰ ratios with respect to PYTHIA predictions. The Λ_c/D⁰ ratio is consistent with models that include coalescence hadronization and charm quark thermalization.
- D⁰ v₂ measurements are consistent with models including charm quark flow.
 - 3D viscous hydrodynamic model describes data suggesting charm quarks have achieved thermal equilibrium.
 - Dynamic models describe data well with a diffusion coefficient 2πTD_s of ~2-5 at T_c, and a temperature dependent range of ~2-12 within 2T_c.

Outlook

Already on disk at STAR:

- High statistics p+p data at $\sqrt{s} = 200$ GeV to improve the baseline for heavy flavor production measurements.
- High statistics p+Au data at $\sqrt{s} = 200$ GeV to investigate CNM effects on heavy flavor production.
- Another large Au+Au dataset at $\sqrt{s_{NN}}$ = 200 GeV.

The next few years at STAR will be filled with exciting heavy flavor results!

D_s and D[±] Production

See strong suppression at high p_T , consistent with suppression seen in D⁰. Indicates substantial energy loss for charm quarks in QGP.

