
22nd International Spin Symposium [SPIN 2016] September 25-30, 2016 at UTUC

Measurements of W single spin asymmetries and W cross section ratios at STAR

Devika Gunarathne (for the STAR Collaboration) Temple University

OUTLINE

- Current Knowledge
 - Anti-quark polarization
 - Flavor asymmetry of the sea
- Theoretical Foundation [W Asymmetry (A_L) / W cross section ratio (RW)]
- Experimental Aspects [RHIC / STAR]
- · Results
 - W A_L
 - W RW
- Summary

Mainly pSIDIS

More Precise / large / increased kinematic range - DATA sets

More Precise FFs

Improved global fitting tools

Mainly pSIDIS

More Precise / large / increased kinematic range - DATA sets

More Precise FFs

But still less precise, in comparison to valence sector

Improved global fitting tools

W A_L measurements at RHIC provide a unique (direct sensitivity to \bar{u},\bar{d}) and clean approach (free of FFs) to constrain anti-quark helicity PDFs at much larger Q^2 scale set by W mass (~6400 GeV²).

Flavor Asymmetry of the Unpolarized Sea : Current knowledge

• Drell-Yan E866 - First concrete evidence

• d/ū theoretical predictions and model calculations

- Recent fit results for CT14 and MMHT14 d/ū ratio shows slight decrease at large x
- Model expectation for BS15 \bar{d}/\bar{u} ratio increases at large x

Flavor Asymmetry of the Unpolarized Sea : Current knowledge

• Drell-Yan E866 - First concrete evidence

d/ū theoretical predictions and model calculations

- Recent fit results for CT14 and MMHT14 d/ū ratio shows slight decrease at large x
- Model expectation for BS15 d/\bar{u} ratio increases at large x

Need more data / experiment to understand d/ū behavior!

• SeaQuest E906 - Preliminary [also shown E866 results]

- Lower Q² [~29 GeV²] than Drell-Yan E866 [54 GeV²] (not so significant impact though).
- Measurement extended to large x.
- Disagreement with E866 at high x.
- B. Kerns et al. (SeaQuest Collaboration), APS April Meeting, 2016

Flavor Asymmetry of the Unpolarized Sea : Current knowledge

• Drell-Yan E866 - First concrete evidence

• \bar{d}/\bar{u} theoretical predictions and model calculations

- Recent fit results for CT14 and MMHT14 d/ū ratio shows slight decrease at large x
- Model expectation for BS15 d/ū ratio increases at large x

Need more data / experiment to understand d/ū behavior!

• SeaQuest E906 - Preliminary [also shown E866 results]

- Lower Q² [~29 GeV²] than Drell-Yan E866 [54 GeV²] (not so significant impact though).
- Measurement extended to large x.
- Disagreement with E866 at high x.

W production at RHIC at much larger Q² [6400 GeV²] than Drell-Yan

Provides an important, completely independent cross check of flavor asymmetry of the sea through measurements of W cross section ratio!

B. Kerns et al. (SeaQuest Collaboration), APS April Meeting, 2016

Theoretical Foundation - W A_L

• Probing quark / anti-quark (sea) flavor structure using W boson production at RHIC

In comparison to SIDIS,

- Direct sensitivity to ū, d.
- Large Q² defined by W mass (more reliable perturbative calculation / higher twist effects unimportant!).
- Parity violating coupling gives rise to single-spin asymmetry which is directly related to anti-quark helicity PDFs.
- Free of FFs.
- Easy detection via decay leptons.

$$A_{L} = \frac{\sigma^{+} - \sigma^{-}}{\sigma^{+} + \sigma^{-}}$$

At RHIC kinematics

• Reconstruct W decay lepton kinematics (P_T~M_W/2, η_e)

$$y_l = y_W + \frac{1}{2} \ln \frac{1 + \cos \theta^*}{1 - \cos \theta^*}$$

$$p_T = p_T^* = \frac{M_W}{2} \sin \theta^*$$

$$x_{1,2} = \frac{M_W}{\sqrt{s}} e^{\pm y_w}$$

$$\frac{M_W}{\sqrt{s}} = 0.16$$

• STAR now can also reconstruct full W kinematics via its recoil = > used for cross section analysis

Theoretical Foundation W A_L - η dependence

$$< x_{1,2} > \sim \frac{M_W}{\sqrt{s}} e^{\pm \eta_e/2}$$

$$\eta \leftrightarrow 0 \longrightarrow x_1 \leftrightarrow x_2$$

$$\eta >>> 0 \longrightarrow x_1 >>> x_2$$

$$\eta = 0 \longrightarrow x_1 \sim x_2$$

$$\eta = -\ln\left(\tan\left(\frac{\theta}{2}\right)\right)$$

$$\eta <<< 0 \longrightarrow \theta \longrightarrow \pi$$

$$\eta >>> 0 \longrightarrow \theta \longrightarrow 0$$

$$\eta = 0 \longrightarrow \theta = \pi/2$$

Theoretical Foundation W A_L - η dependence

$$A_L^{e^-} \approx \frac{\int_{\otimes(x_1,x_2)} \left[\Delta \bar{u}(x_1) d(x_2) (1 - \cos \theta)^2 - \Delta d(x_1) \bar{u}(x_2) (1 + \cos \theta)^2 \right]}{\int_{\otimes(x_1,x_2)} \left[\bar{u}(x_1) d(x_2) (1 - \cos \theta)^2 + d(x_1) \bar{u}(x_2) (1 + \cos \theta)^2 \right]}$$

$$< x_{1,2} > \sim \frac{M_W}{\sqrt{s}} e^{\pm \eta_e/2}$$

$$\eta >>> 0 \longrightarrow x_1 >>> x_2$$

$$\eta = 0 \longrightarrow x_1 \sim x_2$$

$$\eta = -\ln\left(\tan\left(\frac{\theta}{2}\right)\right)$$

$$\eta = 0 \longrightarrow \theta = \pi/2$$

Theoretical Foundation W A_L - η dependence

$$A_L^{e^-} \approx \frac{\int_{\otimes(x_1,x_2)} \left[\Delta \bar{u}(x_1) d(x_2) (1 - \cos \theta)^2 - \Delta d(x_1) \bar{u}(x_2) (1 + \cos \theta)^2 \right]}{\int_{\otimes(x_1,x_2)} \left[\bar{u}(x_1) d(x_2) (1 - \cos \theta)^2 + d(x_1) \bar{u}(x_2) (1 + \cos \theta)^2 \right]}$$

$$< x_{1,2} > \sim \frac{M_W}{\sqrt{s}} e^{\pm \eta_e/2}$$

Theoretical Foundation W A_L - η dependence

$$A_L^{e^-} \approx \frac{\int_{\otimes(x_1,x_2)} \left[\Delta \bar{u}(x_1) d(x_2) (1 - \cos \theta)^2 - \Delta d(x_1) \bar{u}(x_2) (1 + \cos \theta)^2 \right]}{\int_{\otimes(x_1,x_2)} \left[\bar{u}(x_1) d(x_2) (1 - \cos \theta)^2 + d(x_1) \bar{u}(x_2) (1 + \cos \theta)^2 \right]}$$

$$< x_{1,2} > \sim \frac{M_W}{\sqrt{S}} e^{\pm \eta_e/2}$$

Theoretical Foundation W A_L - η dependence

$$A_L^{e^-} \approx \frac{\int_{\otimes(x_1, x_2)} \left[\Delta \bar{u}(x_1) d(x_2) (1 - \cos \theta)^2 - \Delta d(x_1) \bar{u}(x_2) (1 + \cos \theta)^2 \right]}{\int_{\otimes(x_1, x_2)} \left[\bar{u}(x_1) d(x_2) (1 - \cos \theta)^2 + d(x_1) \bar{u}(x_2) (1 + \cos \theta)^2 \right]}$$

$$< x_{1,2} > \sim \frac{M_W}{\sqrt{S}} e^{\pm \eta_e/2}$$

Theoretical Foundation W A_L - η dependence

$$A_L^{e^-} \approx \frac{\int_{\otimes(x_1,x_2)} \left[\Delta \bar{u}(x_1) d(x_2) (1 - \cos \theta)^2 - \Delta d(x_1) \bar{u}(x_2) (1 + \cos \theta)^2 \right]}{\int_{\otimes(x_1,x_2)} \left[\bar{u}(x_1) d(x_2) (1 - \cos \theta)^2 + d(x_1) \bar{u}(x_2) (1 + \cos \theta)^2 \right]}$$

$$< x_{1,2} > \sim \frac{M_W}{\sqrt{s}} e^{\pm \eta_e/2}$$

Theoretical Foundation: W unpolarized cross-section ratio

W unpolarized cross section ratio

$$R(x_F) \equiv \frac{\sigma_W^+}{\sigma_W^-} = \frac{u(x_1) \, \bar{d}(x_2) + \bar{d}(x_1) \, u(x_2)}{\bar{u}(x_1) \, d(x_2) + d(x_1) \, \bar{u}(x_2)} + NLO + NNLO + \dots$$

$$R = \frac{N_O - N_B}{N_O - N_B} \cdot \frac{\epsilon}{\epsilon^+}$$

 $N_O^{+(-)}$ = measured positron (electron) decay events

 $N_B^{+(-)}$ = Positive (negative) background events

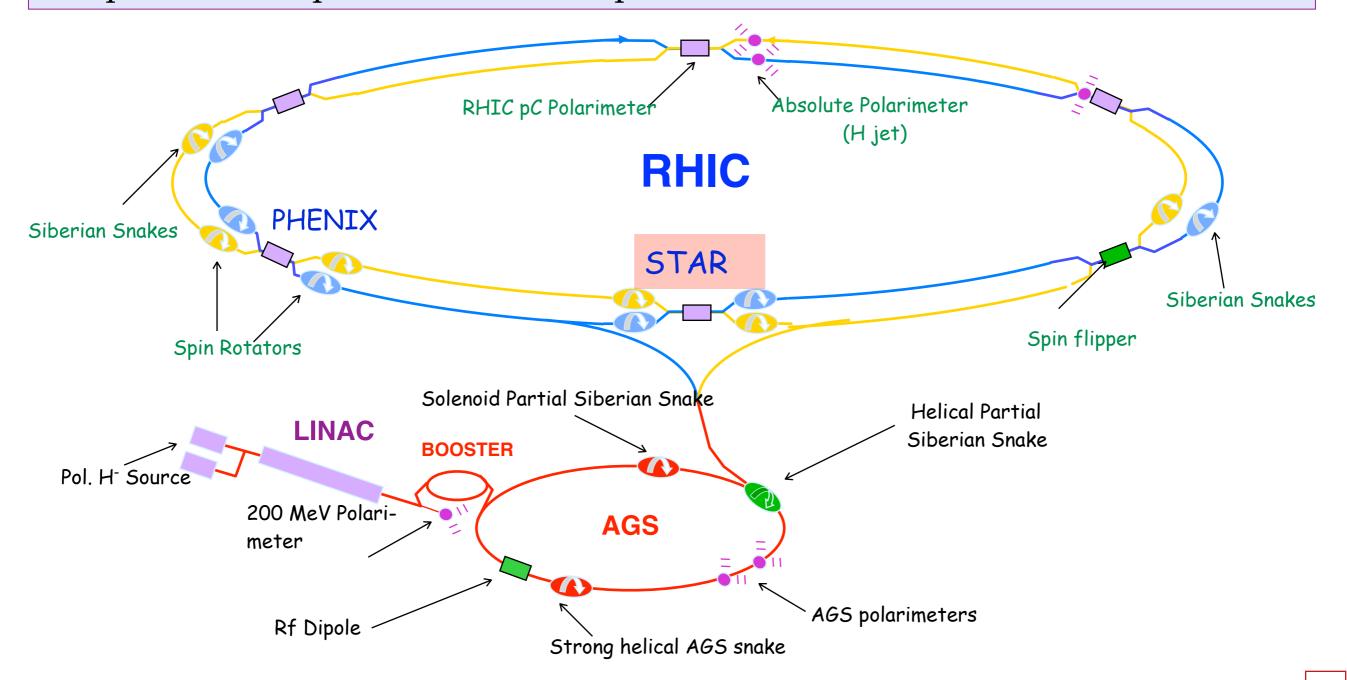
 \mathcal{E} = lepton detection efficiency

Approximate kinematic range at RHIC:

$$0.06 < x < 0.4$$
 for $-2 < \eta < 2$

RHIC kinematic coverage (mid-rapidity) is sensitive in particular to "turn over" region of x in d/ū of E866.

mid-rapidity = > $|\eta| < 1$, 0.1< x < 0.3



EXPERIMENTAL ASPECT -RHIC

• RHIC: Relativistic Heavy Ion Collider

The World's first polarized hadron collider!

Spin varies from bunch to bunch. Spin pattern changes from fill to fill. Spin rotators provide choice of spin orientation.

EXPERIMENTAL ASPECT - STAR

• STAR: Solenoidal Tracker At RHIC

TPC: Charged particle tracking

BEMC, EEMC: EM Calorimetry

TPC : $-1.3 < \eta < +1.3$

BEMC: $-1.0 < \eta < +1.0$

EEMC: $+1.1 < \eta < +2.0$

FGT : $+1.0 < \eta < +2.0$

ANALYSIS - RHIC PP running STAR W data collection

Production runs at √s=500/510GeV (long. polarization) in 2009, 2011, 2012 and 2013:
 W production (Quark polarization) / Jet and Hadron production (Gluon polarization)

Run	L (pb ⁻¹)	P (%)	FOM (P ² L) (pb ⁻¹)
2009	12	0.38	1.7
2011	9.4	0.49	2.3
2012	77	0.56	24
2013	246.2	0.56	77.2

- W A_L recent result present today is from data collected during year 2013, the largest data set STAR ever collected!
- ullet Prior W A_L analysis from data collected during 2009 and 2011+2012 are published!

Phys. Rev. Lett.106, 062002 (2011)

Phys. Rev. D85, 092010 (2012)

STAR: PRL 106, 062002(2011)

STAR: PRL 113, 072301(2014)

ANALYSIS - Mid rapidity STAR W selection criteria

ANALYSIS - Mid rapidity STAR W selection criteria

- Isolated high P_T track pointing to isolated EMC cluster.
- Large Imbalance in the reconstructed vector P_T sum in 4π due to undetected neutron.

Transverse plane view

- Several tracks pointing to several EMC clusters.
- Vector P_T sum is balanced by the Jet opposite in π .

TPC track extrapolated

to Barrel colorimeter tower grid

ANALYSIS - Mid rapidity STAR W selection criteria

- Isolated high P_T track pointing to isolated EMC cluster.
- Large Imbalance in the reconstructed vector P_T sum in 4π due to undetected neutron.

Transverse plane view

- Several tracks pointing to several EMC clusters.
- Vector P_T sum is balanced by the Jet opposite in π .

- Mid-rapidity STAR W selection criteria
 - Match P_T > 10 GeV track to BEMC cluster
 - Isolation ratio 1 / Isolation ratio 2
 - P_T-balance cut

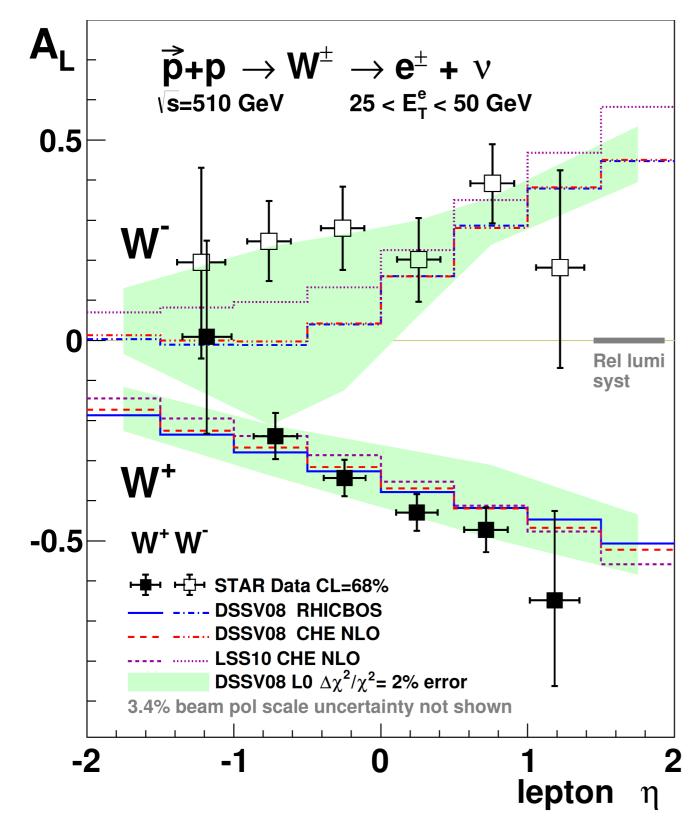
$$\begin{array}{|c|c|}
\hline
E^{e}_{T} / E_{T}^{4X4} > 95\% \\
\hline
E^{e}_{T} / E_{T}^{\Delta R < 0.7} > 88\% \\
\hline$$

ANALYSIS - Mid rapidity STAR W BG Estimation

- Data-driven QCD : BG Events which satisfy e^{+/-} candidate isolation cuts due to "jet" escape detection outside STAR acceptance, |η|>2.
- Second EEMC: due to "jet" escape detection at "non-existent" East EEMC, estimate based on "real" West EEMC

ElectroWeak Background

• Determine from MC simulation


$$Z \longrightarrow e^+ + e^-$$

$$W \longrightarrow \tau + v$$

RESULTS - W A_L - STAR 2011+2012

• STAR 2011 + 2012 W AL Published Results

STAR, PRL113,072301(2014)

- A_L for W+ is consistent with
 theoretical predictions constrained
 by polarized SIDIS data.
- A_L for W- is larger than the prediction for $\eta_e < 0$, which suggest large $\Delta \bar{u}$.
- Indication of positive ∆ū at
 0.05<x<0.2.

RESULTS - W A_L - STAR 2011+2012 Impact - I

Impact on helicity PDF from DSSV [STAR 2012 W A_L Preliminary]

- Significant constraints on both $\Delta \bar{u}$ and $\Delta \bar{d}$.
- Significant shift of ∆ū central value from STAR 2012 W A_L data.

RESULTS - W A_L - STAR 2012 Impact - II

- Impact on helicity PDF from NNPDF pol 1.1 [RHIC W A_L]
 - Anti u quark polarization

Anti d quark polarization

Significant shift of ∆ū central value from RHIC W A_L data.

RESULTS - W A_L - STAR 2013

• STAR 2013 W A_L Preliminary Results =>

Just Released @ INPC 2016!!!

- The Most Precise
 measurements of W A_L up to date!
- Expect to further constrain Δū and Δđ.

RESULTS - W A_L - STAR 2011+2012 vs 2013

• STAR 2013 W A_L Preliminary Results in comparison to STAR 2011+2012 published results

- STAR 2013 W A_L Preliminary results is the Most Precise measurements of W A_L up to date!
- STAR 2013 preliminary W AL results consist with published 2011 + 2012 results.
- Uncertainties were reduced by 40 %.

RESULTS - W A_L - RHIC

• STAR 2013 Preliminary Results in comparison to STAR 2011+2012 published results, PHENIX 2011+2012, PHENIX 2013 W AL results

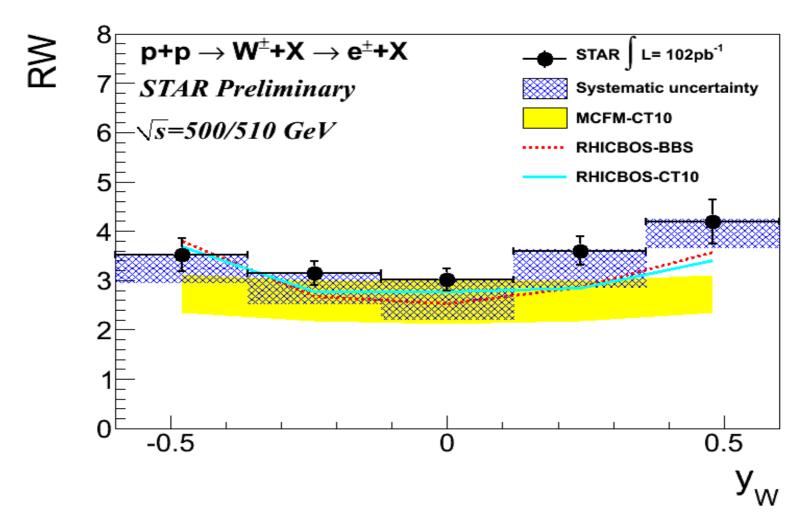
World data of W A_L

- STAR 2013 W AL Preliminary results is the Most Precise measurements of W A_L up to date!
- STAR 2013 preliminary W AL results consistent with published 2011 + 2012 results.
- Uncertainties were reduced by
 40 %.
- Also consistent with PHENIX results.

RESULTS - W cross section ratio - RW(η_e) - I

• STAR 2011+2012 Preliminary Results [statistics - 102 pb⁻¹]

RESULTS - W cross section ratio - RW(η_e) - I


• Projected STAR Run 13 Statistical Impact

Inclusion of Run-13 data will improve precision of the cross section ratios. Run-17 will add additional data of ~400 pb-1 to improve further.

RESULTS - W cross section ratio - RW(yw)

- Rw vs W Rapidity
- · W boson rapidity can be determined by reconstructing the W kinematics via its recoil
- Recently through the combination of data and MC simulations, a procedure for reconstructing the W boson rapidity has been established at STAR.
- This procedure has been applied to the 2011 + 2012 combined data set for preliminary W cross section results shown below as well as recently published transverse single-spin asymmetry measurements at STAR Phys. Rev. Lett. 116 (2016) 132301

SUMMARY

- •Mid-rapidity (Run 11/12): Published Wasymmetry results suggest large anti-u quark polarization along with broken QCD sea.
- New prelim. result of STAR 2013 W AL is the most precious measurement up to date.

 These results will help to further constrain antiquark helicity distributions.
- New STAR 2013 W AL prelim. results consistent with published STAR 2011+2012 results.
- Prelim. cross-section ratio measurement (Run 11/12): Strong physics case of unpolarized dbar/ubar probe using W production complementary to SeaQuest.
- •Run 13 data (~300 pb⁻¹, analyzing) and Run 17 data (~400 pb⁻¹, next year) will further improve precision of W cross section ratio measurements at STAR allowing to constrain dbar/ubar ratio.

BACK UP

INTRODUCTION: Proton Helicity Structure

1989 : EMC : DIS

$$\Delta \Sigma = 0.12 \pm 0.09 \pm 0.14$$

"Spin Crisis"

Naive Parton Model

$$\frac{1}{2} = \frac{1}{2} (\Delta u_v + \Delta d_v)$$

Gluons, Sea quarks are polarized.

Parton orbital angular momentum.

Current Understanding

$$\langle S_z \rangle = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_z$$

$$\Delta \Sigma = \int (\Delta u + \Delta d + \Delta s + \Delta \overline{u} + \Delta \overline{d} + \Delta \overline{s}) dx$$

DIS

- Well measured!
- Not sensitive to flavor separation!

SIDIS

- FF's use to tag flavor!
- Flavor separation / quark, anti-quark separation!
- But large uncertainties in FFs.

STAR W A_L 2011+2012, 2013 - Consistance checking

STAR 2013 W A _L Preliminary					
Lepton η Range	$W^+ A_L$	$W^- A_L$			
$-1.1 < \eta < -0.5$	-0.254 ± 0.037	0.262 ± 0.062			
-0.5<η<0	-0.332 ± 0.028	0.340 ± 0.071			
0<η<0.5	-0.420 ± 0.028	0.237 ± 0.071			
$0.5 < \eta < 1.1$	-0.559 ± 0.036	0.386 ± 0.061			

STAR 2011+2012 W A _L					
Lepton η Range	W^+ A_L	$W^ A_L$			
$-1.1 < \eta < -0.5$	-0.239 ± 0.057	0.247 ± 0.100			
-0.5<η<0	-0.343 ± 0.045	0.280 ± 0.104			
0<η<0.5	-0.429 ± 0.045	0.202 ± 0.104			
$0.5 < \eta < 1.1$	-0.472 ± 0.056	0.391 ± 0.099			

	W^+ A_L	$W^- A_L$
$\chi^2/{\sf n.d.f}$	1.83/4	0.32/4

STAR 2013 W A_L - Systematic Uncertainties

- Background estimation:
 - From data-driven procedure, statistics of embedding sample
 - Less than 10% of statistical error
 - Negligible polarized background contribution
- BEMC gain calibration:
 - **4.5**%
- Beam polarization uncertainty:
 - Correlated scale 3.3%
- Relative luminosity uncertainty:
 - Estimated from a high- p_T [25,50] GeV, QCD sample
 - Correlated offset 0.007 (2011+2012), 0.004 (2013)

BG - Forward and central bins combined

BG ESTIMATION

TPC Charge-sign Separation

DSSV - Polarized flavor asymmetry

• DSSV global fit result

• From recent DSSV++
result incl. STAR A_L
data:

$$\int_{0.05}^{1} \Delta \bar{u}(x, Q^2) dx \approx 0.02$$

$$\int_{0.05}^{1} \Delta \bar{d}(x, Q^2) dx \approx -0.05$$

W reconstruction - Full kinematics

$$\vec{P}_T^W = \vec{P}_T^e + \vec{P}_T^v = -\vec{P}_T^{recoil}$$

- Recoil Reconstruct using tracks and towers
- MC correction applied for part of the recoil not within STAR acceptance!

$$\sum_{T \in tracks} \vec{P}_{T}^{i}$$

Neutrino transverse momentum based on missing PT = >

$$\vec{P}_T^{\nu} \approx -\sum_{i \in \text{tracks} \atop \text{clusters}} \vec{P}_T^{i}$$

• Neutrino longitudinal momentum from decay kinematics = >

$$M_W^2 = (E_e + E_v)^2 - (\vec{p}_e + \vec{p}_v)^2$$

W cross - section ratio efficiency / systematic

- Efficiency studies
 - depend very little on the charge
 - Run 12 is less efficient in comparison to run 11, due to lower track reconstruction efficiency
- lepton Rapidity
 - Systematic are much less than statistical
 - Syst. comes from Background subtraction
- W rapidity
- Correction factors are approximately charge and interaction rate independent.
- No impact on cross-section ratios
- Syst. from Background subtraction and W reconstruction smearing