Longitudinal Double-spin Asymmetries for π^0 Production at Forward Rapidities in pp Collisions at $\sqrt{s} = 200$ GeV at STAR

Scott Wissink

for the STAR Collaboration

- Brief motivation
- The STAR Endcap EMC
- π^0 reconst in the EEMC
- Preliminary results
- π^{0} 's in FPD, γ 's in EEMC
- Status and Outlook

SPIN 2008

Physics Motivation for Inclusive Spin Studies

The RHIC Spin Program:

Study **hard partonic scattering** processes in polarized pp collisions, using polarization of one parton to probe helicity preferences of the other

- For ΔG, strongest constraints to date have come from measurements of double-spin asym. A_{LL} in inclusive jet studies at STAR, π⁰ studies at PHENIX, both near mid-rapidity
- Very useful, to check consistency of data analysis and assumptions of theoretical models, to extract A_{LL} for different outgoing particles, in different kinematics regimes
- Probes new ranges in *E* and *p_T* → *x_g*; fragmentation functions; and alternate mixtures of partonic subprocesses
- Often requires new detectors!

SPIN 2008

The STAR Endcap Electromagnetic Calorimeter

- Lead/scintillator sampling e.m. calorimeter
- Covers 1.09 < η < 2 over full azimuth
- 720 optically isolated projective towers (~22 X₀)
- 2 preshower, 1 postshower layers, and SMD

October 6-11, 2008

3

Reconstructing π^{0} 's in the **EEMC**

Basic philosophy: try to maximize π^0 yield by considering all combinations of all γ candidates, keeping threshold values low even if backgrounds are increased.

 \rightarrow Identify neutral pions by determining

 $M_{\rm inv}^{2} = 2E_{1}E_{2}(1-\cos\varphi_{\gamma\gamma})$

Procedure: clusters ->points -> $\pi 0$

- 1. E1 + E2 measured by EMC towers
- 2. opening angle measured by SMD
- 3. energy sharing $z\gamma\gamma$ based on both

SMD seed energy =3 MeV7 strip energies summed for smd cluster

Point $p_{\tau} > 1.5 \text{ GeV}$ π^0 candidates accepted 1.086 < η < 2.0

Tower ET cut > 3.0 GV * doubleGaussian

Actual (though not typical) SMD response

All events require:

Strip Energy

0.045

0.04

0.035

Trigger = "High tower" + trigger patch Event vertex found

Strip Energy

16

59.56

3.137

Entries

Mean

RMS

Extracting Yields from Run 6 Data Set

➤347 longitudinal runs from 41 fills **2.2M events**, ~320k π^0 candidates ~200k after bkgd subtraction \rightarrow ~9% reconstruction effic / trigger

Strip-to-strip fluctuations in the SMD response produce a low-mass peak in spectrum – dominates over combinatorics, but not reproduced with EEMC SMD slow simulator!

Adopt a phenomenological approach: Fit π^0 mass spectra using the function

$$y(x) = A_1 e^{-\alpha x} + A_2 \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma[1+k(x-\mu)]}\right)^2\right]$$

Only amplitudes A_1 and A_2 are allowed to vary with spin state

5

Mean

RMS

Comparison of peak fit params to Simulations

Divide data into 7 p_T bins – look for "smoothness" in fit parameters, compare to MC (blue)

Consistency Checks

2.

Use normalized, spin-sorted yields to calculate
longitudinal single-spin asymmetries A_L –
consistent with zero for both Y & B beams.

Estimate sensitivity of A_{LL} to choices in fitting:

- a) vary fitting range (nominally 50-400 MeV) by ±10 MeV at each end
- b) increase complexity of assumed shape of background, adding parameters to vary but keeping normalized $\chi^2 \sim \text{constant}$
- c) For each p_T bin, hold the peak parameters μ and σ fixed for the spin-sorted fits, but displaced from 'best' values by 2 x error

Changes in *A_{LL}* resulting from a - c were added algebraically to estimate contribution to the total systematic error budget

Correcting for Background – Two Methods

- 1. Integrate the fitted exponential over the same mass range as for pions, then subtract to calculate $A_{LL}(pion)$
- 2. Sum yields in sidebands outside π^0 peak, calculate $A_{LL}(bkgd)$ for each, average, then use to correct $A_{LL}(raw) \rightarrow A_{LL}(pion)$

Preliminary Result: A_{LL} for π^0 's in the EEMC

- Negligible dependence on bkgd method – acc't for diff's in syst. error
- Theoretical predictions
 ~2-3 times smaller than
 at η=0 → significant loss
 in physics sensitivity
- First measurement of A_{LL} in this η range → consistent with other inclusive results that rule out large ΔG.
- Systematic errors small and appear to be under control – dominated by assumptions in fitting

Further Forward – π^0 's in the STAR FPD's

Asymmetries consistent among all detectors – but also consistent with zero at all x_F , in keeping with theoretical expectations.

Even Further Forward ... in time

Photon-jet coincidences - still the "Golden channel" !

- ✓ Direct photon production dominated (~90% of yield) by a single LO pQCD process: $qg \rightarrow q\gamma$
- ✓ Partonic spin correlation large for this process, esp. when gluon / γ is back-scattered where cross section peaks!
- ✓ 4-mom of γ + direction of coincident jet → can reconstruct *x*'s of initial state partons. Additional information on jet p_T → provides handle on k_T smearing effects
- Want to use high-x quarks (where they're most polarized) to probe low-x gluons (where they are most abundant)

→ Very asymmetric collisions! Outgoing particles boosted into forward direction / to STAR EEMC

Scott Wissink, IUCF

Experimental Challenges

Most precise tool: use high granularity SMD

- Discriminate against nearby mips (crucial where TPC tracking is no longer efficient)
- Examining shower shape can distinguish between single shower and a nearby pair
- > But only if SMD response is well understood!

Non-trivial to collect a data sample of isolated photons to compare to simulated response

One idea: "tag" photons by looking at SMD points that reconstruct to correct n mass

- Adjusting GEANT settings, lowering thresholds, increasing sensitivity, not much help
- More radical approach: for each photon in GEANT record, replace simulated SMD strip energies with those stored in a 'library' of empirical responses from η -meson study
- If we can rely on getting shape right \rightarrow can look for *small deviations* in fit residuals

Status of Isolated Photons in Endcap

All samples above normalized to 3.1 pb⁻¹. <u>Sum</u> of two MC samples agrees with data in pT, η , and preshower energy distributions

0.2

4<pre1<10MeV

0.4

0.6

0.8

efficiency [y-jet]

SPIN 2008

Summary and Outlook

- First look at longitudinal double spin asymmetries for π^{0} 's at high η (EEMC and FPD's) \rightarrow lower x_g . Statistics not great, A_{LL} expected to be small: but errors under control, results consistent with incl. studies
- Has forced a detailed look at behavior of <u>all</u> components of EEMC \rightarrow critical for future work in extracting A_{LL} for γ -jet coincidences

Vear-term goals:

- See if a "data-driven" MC sample can reproduce low-mass structure in π^0 spectra
- If so, obtain realistic estimates of reconstruction efficiencies vs p_T , η , $z_{\gamma\gamma}$, etc
- > Better handle on background subtraction for A_{LL} , extract π^0 cross section!

