Longitudinal Double-spin Asymmetries
for n° Production at Forward Rapidities
in pp Collisions at \'s = 200 GeV at STAR
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» Brief motivation

« The STAR Endcap EMC
« 10 reconst in the EEMC
* Preliminary results

« 1¥s in FPD, y’'s in EEMC
 Status and Outlook
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Physics Motivation for Inclusive Spin Studies
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The RHIC Spin Program:

Study hard partonic scattering processes in
polarized pp collisions, using polarization of one
parton to probe helicity preferences of the other “r

0.6

* For AG, strongest constraints to date have
come from measurements of double-spin
asym. A, in inclusive jet studies at STAR,
70 studies at PHENIX, both near mid-rapidity 0o

02

» Very useful, to check consistency of data
analysis and assumptions of theoretical 1= 3.3 _
models, to extract A,, for different outgoing [ . .
particles, in different kinematics regimes

* Probes new ranges in Eand p; > Xg5
fragmentation functions; and alternate I
mixtures of partonic subprocesses T

« Often requires new detectors!
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The STAR Endcap Electromagnetic Calorimeter

Scintillating strip SMD, 288 strips
per plane, two planes (u and v)

WLS fiber > 16-anode MAPMTs

“No gaps” between 30° sectors

~ 1 mm peak resolution
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Lead/scintillator sampling e.m. calorimeter

Covers 1.09 < n < 2 over full azimuth

720 optically isolated projective towers (~22 X,)

2 preshower, 1 postshower layers, and SMD

217 cm radius
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Reconstructing s in the EEMC

. . . . Strip E rip Ener
Basic philosophy: try to maximize n° yield [Strip Energy | :ttPE E,':
by Considering all Combinations Of a//’Y .u.n455_ ................ ................... _ ............ ....... oan 55,55
Candidates, keeping threshold vaIueS |OW u.n4;— ................ ................... B O ....... T e
even if backgrounds are increased. 0.0350 ___________________ N
> Identify neutral pions by determining u_ngg_ ________________ ___________________ N

) 0.025;

M, =2EE,(l-cosg,) 002}
Procedure: clusters ->points -> 10 0.015¢
0.01}

1. E1 + E2 measured by EMC towers u_mE

2. opening angle measured by SMD
3. energy sharing zyy based on both

'||_||i| ]
ES 50 55 60 65 70

SMD seed energy =3 MeV Actual (though not typical) SMD response

7 strip energies summed for smd cluster

Point p;r> 1.5 GeV All events require:
n° candidates accepted 1.086 <1 < 2.0 Trigger = “High tower” + trigger patch
Tower ET cut > 3.0 GV * doubleGaussian Event vertex found
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Extracting Yields from Run 6 Data Set

»347 longitudinal runs from 41 fills
2.2M events, ~320k n® candidates

~200k after bkgd subtraction 2> ~9%

reconstruction effic / trigger

» Strip-to-strip fluctuations in the

SMD response produce a low-mass

peak in spectrum — dominates over

combinatorics, but not reproduced

| diphoton invariant mass hMassAny
Entries 36509
Mean 0.2224

i | 1 | e | e Jo G S S D BB B RMS 0.1995
%2 I ndf 52.25/ 35
po 7.225 + 0.009

2000 F R p1 1803 + 24.1

1500

1000 17%0T

with EEMC SMD slow simulator! 500

[ SMD U cluster for low mass pi0 | UclusterD| | SMD V cluster for low mass pi0 | VelusterD 0

= Entries 14 = Entries 7
0_02; ] |Mean 1748 0.023 Jli Mean 2128 [
0.0187 RMS  1.942 0_018: RMS  1.645
0-015F = 0.016%
0.0145 0.0143
0.012f 0.0122
0.0‘6 0.0‘5
0.008 -] 0.008] -
0.006% 0.006'%
0.004 0.004f - o
0.002- = - 0.002}

166 168 170 172 174 176 178 180

206 208 210 212 214 216 218 220

Yield found by

summing blue

curve between
green lines
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» Adopt a phenomenological approach:
Fit =° mass spectra using the function

y(x)=Ae ™ + A, exp _%(#im)z‘

Only amplitudes A, and A, are allowed to
vary with spin state
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Comparison of peak fit params to Simulations

Divide data into 7 p; bins — look for “smoothness” in fit parameters, compare to MC (blue)

pt dependence of peak width p4 pt dependence of pi0 peak p3
.03 814

o

0.02

0.136—

0.015 width grows monotonically 0.135
: with p;/ E — consistent w/ 0134F
simulations, no smearing

0.01

little p dependence |-
above threshold —
pion mass about right
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Consistency Checks

¥2 1 ndf

0.05-
0.04—
0.03 i STAR 2006 Preliminary P
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8.001/6
0.001056 + 0.003325

Use normalized, spin-sorted yields to calculate

consistent with zero for both Y & B beams.

1.
/ longitudinal single-spin asymmetries A, —
2

Estimate sensitivity of A;; to choices in fitting:

a) vary fitting range (nominally 50-400 MeV)
by £10 MeV at each end

b) increase complexity of assumed shape of
background, adding parameters to vary
but keeping normalized %2 ~ constant

c) For each p;bin, hold the peak parameters
1 and o fixed for the spin-sorted fits, but
displaced from ‘best’ values by 2 x error

Changes in A, resulting from a - ¢ were added
algebraically to estimate contribution to
the total systematic error budget
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Correcting for Background — Two Methods

1. Integrate the fitted exponential over 2. Sum vyields in sidebands outside ©° peak,
the same mass range as for pions, calculate A,, (bkgd) for each, average,
then subtract to calculate A, (pion) then use to correct A;,(raw) — A, (pion)

| p+p->1°X, Vs=200Gev, 1.0<n<2.0 | | p+p->1°X, Vs=200Gev, 1.0<n<2.0 |
%0151 %0151
E| E STAR 2006 Preliminary E| E STAR 2006 Preliminary
RIS GO e
[ [ A{C-G
0.05 o 0.05 o ——
of } — 0 } =
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pT[Gev/c] pT[Gev/c]

NOTE: Curves are predictions of A, for 7%’s in the EEMC

— added here only to set a scale!
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Preliminary Result: A,, for s in the EEMC

p+p->1°X, Ys=200Gev, 1.0<n<2.0

p.15
<L

Wopelsang Frediction GRSY)
AG=G

AG=G

AfG)=atd

AGE=D

0.1

0.05

STAR 2006 Preliminary n°

-0.05

-0.1

-0.15

12

pT[Gev/c]

Negligible dependence
on bkgd method — acc't
for diff’'s in syst. error

Theoretical predictions
~2-3 times smaller than
at n=0 —>significant loss
in physics sensitivity

First measurement of
A,, in this n range 2>
consistent with other
inclusive results that
rule out large AG.

Systematic errors small
and appear to be under
control — dominated by
assumptions in fitting
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Further Forward — nt®’s in the STAR FPD’s

West FPD++ East FPD
Inner: Two 6x6 arrays of small Pb glass Two 7x7 arrays of small Pb glass (N/S)
Outer: Total 168 Large Pb glass cells Located at “far” position, X-offset 30.7 cm
Average pseudo-rapidity: 3.25 Average pseudo-rapidity: 3.7
72X 3.8=cm cellg, 336X 5.8—cm cells
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ALL for Forward 7[0’5 in Run 6 Steve Heppelmann

and Len Eun

pl+p > 20+ XS =200Ge¥V p +p —m0+xf 200GeV

ALLL

0.01_._ ....................... ...................... ........................ ....................... ........................ ........................
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Asymmetries consistent among all detectors — but also consistent

with zero at all x,, in keeping with theoretical expectations.
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Even Further Forward ... in time

Photon-jet coincidences — still the “Golden channel” !

v" Direct photon production dominated (~90% of yield) by a
single LO pQCD process: qg — qy

v" Partonic spin correlation large for this process, esp. when
gluon / vy is back-scattered — where cross section peaks!

v 4-mom of ¥ + direction of coincident jet - can reconstruct
x’s of initial state partons. Additional information on jet p;

—> provides handle on k; smearing effects +1.0
v" Want to use high-x quarks (where they’re most polarized) to
probe low-x gluons (where they are most abundant) ~
| 080 rrrr e <® .05
- Very asymmetric - .
collisions! Outgoing 0.60[~ O° = 50 GeV* .
particles boosted into ~  0.40 .
forward direction / to < - from D?S
STAR EEMC 0.20—
0.00 Ll 1

107 10° 10" 10°
78:TAR ~quark
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Experimental Challenges

Normalized shower shape in SMD

Most precise tool: use high granularity SMD 1000
 Discriminate against nearby mips (crucial ~ 0.100 ;’i“
where TPC tracking is no longer efficient) §> ‘.ﬁ =,
T o N ®
« Examining shower shape can distinguish 0.010 o =it
between single shower and a nearby pair . - "om |
0.001 —m— ‘ ‘ —
» But only if SMD response is well understood! 0o 5 10 15 20 2

Strip Number
Non-trivial to collect a data sample of isolated photons to compare to simulated response

One idea: “tag” photons by looking at SMD points that reconstruct to correct n mass
» Shows clear problem > EEMC shower profile significantly wider than MC suggests
» Adjusting GEANT settings, lowering thresholds, increasing sensitivity, not much help

» More radical approach: for each photon in GEANT record, replace simulated SMD strip
energies with those stored in a ‘library’ of empirical responses from n-meson study

* If we can rely on getting shape right - can look for small deviations in fit residuals
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Status of Isolated Photons in Endcap
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MC “QCD bkgd”

MC vy-jet events 2006 pp data

All samples above normalized to 3.1 pb-'. Sum of two
MC samples agrees with data in pT, n, and preshower
energy distributions

STAR

“Purity” of photons in data
sample strongly correlated
with pre-shower response

“<4=mm No energy in either layer
—> mostly isolated photons

E(prei1) > 4 MeV - nearby
photons and/or hadrons
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Summary and Outlook

First look at longitudinal double
spin asymmetries for n%’s at high
n (EEMC and FPD’s) - lower x,.
Statistics not great, A;; expected to
be small: but errors under control,
results consistent with incl. studies

Has forced a detailed look at
behavior of all components of
EEMC - critical for future work in

extracting A, for y-jet coincidences

Near-term goals:
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« See if a “data-driven” MC sample can reproduce low-mass structure in n° spectra

* If so, obtain realistic estimates of reconstruction efficiencies vs pr, n, z,, , etc

> Better handle on background subtraction for A, , extract n° cross section!
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