

Polarization Measurements of Hyperons and Vector Mesons in Heavy Ion Collisions at STAR

Xin Dong for the STAR Collaboration

- Motivations
 - Detector Setup and Analysis Technique
- Results
 - Λ Global Polarization Measurement
 - Spin alignment measurement of vector mesons (K*, ϕ)
 - w.r.t. Reaction Plane Global Polarization
 - w.r.t. Production Plane Production dynamics

Conclusions

Phys. Rev. C 76 (2007) 024915; Phys. Rev. C 77 (2008) 061902(R)

System orbital angular momentum

Large orbital angular momentum possessed in non-central Au+Au collisions:

Oct. 6-11th, 2008, SPIN 2008, Charlottesville, VA X. Dong / LBNL

Global Polarization

• Transformation of the large angular momentum \vec{L} into the particle spin

Global Polarization

- Features of global polarization:
 - For non-central collisions, it should have a finite value, at small p_{τ}
 - in central rapidity;
 - It should increase with the impact parameter **b**;
 - It should vanish in central collisions

 \vec{L} is perpendicular to the reaction plane Correlations with respect to (w.r.t.) the reaction plane (Anisotropic flow technique)

Global vector meson spin alignment and global hyperon polarization

Spin Alignment

Spin alignment w.r.t the production plane – production mechanisms

• particle formation dynamics or to intrinsic quark transverse spin distribution

B. Andersson et. al. PLB 85, 417 (1979); J. Szwed PLB 105, 403 (1981); R. Barni et. al. PLB 296, 251 (1992); J. Soffer et. al. PRL 68, 907 (1992)

• May be correlated with the global polarization convoluted with an azimuthal angular anisotropy (v_2) s. Voloshin, nucl-th/0410089

 ρ_{00} -- spin density matrix element (1/3 for unpolarized case) $\rho_{00} = 1 - \rho_{11} - \rho_{-1-1}$

Relativistic Heavy Ion Collider (RHIC)

Detector, Data Sample & Reconstruction

Analysis Technique

and the polarization direction

Measuring the decay daughter momentum distribution in the rest frame of its parent particle w.r.t. the polarization direction.

Lambda global polarization

$$\frac{dN}{d\cos\theta^{*}} \propto 1 + \alpha_{H}P_{H}\cos\theta^{*}$$

$$\downarrow$$

$$decay \text{ parameter} = 0.642 \text{ for } \Lambda$$

$$3 \quad (4.5)$$

$$P_H = \frac{3}{\alpha_H} \langle \cos \theta^* \rangle$$

Vector meson spin alignment

 $\frac{dN}{d\cos\theta^*} \propto (1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta^*$

ρ₀₀ -- spin density matrix element
 1/3 for unpolarized case

Oct. 6-11th, 2008, SPIN 2008, Charlottesville, VA X. Dong / LBNL

Event Plane Reconstruction

Standard event plane reconstruction method in flow analysis in STAR.

A.M. Poskanzer and S.A. Voloshin, Phys. Rev. C 58 (1998) 1671

$$Q_n \cos(n\Psi_n) = X_n = \sum_i w_i \cos(n\phi_i) \qquad \Psi_n = \left(\tan^{-1} \frac{\sum_i w_i \sin(n\phi_i)}{\sum_i w_i \cos(n\phi_i)} \right) / n$$
$$Q_n \sin(n\Psi_n) = Y_n = \sum_i w_i \sin(n\phi_i).$$

<u>A global polarization</u> – similar to v_1 analysis

Use tracks at the Forward TPC detectors (2.8<| η |<3.8) for the 1st order event plane reconstruction.

The direction is fixed by convention that spectator neutrons are deflected along the direction of the impact parameter.

<u>Spin alignment of vector mesons</u> - similar to v_2 analysis advantage: no need to know the polarization direction use tracks in the TPC (mid-rapidity) for the 2nd order event plane reconstruction.

Lambda Global Polarization

Lambda Global Polarization

Upper limit for the global Lambda polarization in Au+Au collisions at RHIC

 $|P_{\Lambda,\bar{\Lambda}}| \leq 0.02$

Spin alignment w.r.t. the reaction plane

✓Data favor no large global polarization for vector mesons in heavy ion collisions.

✓Consistent with Lambda global polarization measurements.

✓ Current uncertainty cannot distinguish different hadronization mechanisms.

Spin alignment w.r.t the reaction plane

Within current sensitivity, our measurement exhibits no strong spin alignment for vector meson at all collision centralities, presumably because the spin-orbit coupling for quark polarization is not large enough to be manifested in our measurement.

Spin alignment w.r.t. the production plane

Comparison between different systems

DELPHI Col. PLB 406 (1997) 271

The spin density matrix elements for the ρ^0 , $K^{*0}(892)$ and ϕ produced in hadronic Z^0 decays are measured in the DELPHI detector. There is no evidence for spin alignment of the $K^{*0}(892)$ and ϕ in the region $x_p \le 0.3$ ($x_p = p/p_{\text{beam}}$), where $\rho_{00} = 0.33 \pm 0.05$ and $\rho_{00} = 0.30 \pm 0.04$, respectively. In the fragmentation region, $x_p \ge 0.4$, there is some indication

• At small x_p region, ρ_{00} are consistent with 1/3 from ee, pp, to AuAu collisions

- Lambda global polarization w.r.t. The reaction plane is consistent with zero with statistical uncertainty ~ 0.01. Upper limit $|P_{\Lambda,\bar{\Lambda}}| \le 0.02$
- w.r.t the reaction plane, $\rho_{oo}(p_{\tau})$ of (K*, ϕ) are consistent within 1/3 within statistical and systematic uncertainty in the measured p_{τ} up to 5 GeV/c and no strong dependence on collision centrality or transverse momentum was observed.
- → Vector mesons and hyperons in the measured kinematic region appear not to be produced with a strong global polarization despite the presence of a large orbital angular momentum for the system created in non-central Au+Au collisions.
- w.r.t. the production plane, $\rho_{oo}(p_{\tau})$ is less than 2 standard deviation above 1/3 and is similar to the results from p+p collisions.
- → Vector mesons in the measured p_{τ} region at mid-rapidity don't seem to carry a significant polarization through production dynamics.