

Longitudinal spin transfer of Lambda and anti-Lambda in pp collisions at STAR

Qinghua Xu (Shandong Uni.) *for the STAR collaboration* SPIN-2010, September 27, 2010, Juelich

Content:

- Nucleon spin structure and its strangeness part ΔS
- Measurement of longitudinal spin transfer of hyperons at STAR
- Summary & outlook

Absolute Polarimeter (H[†] jet) RHIC pC Polarimeters **PHOBOS BRAHMS** Siberian Snakes Siberian Snakes **PHENIX STAR** Spin Rotators Spin flipper (longitudinal polarization) Spin Rotators Solenoid Partial Siberian Snake (longitudinal polarization) Pol. H⁻ Source LINAC Helical Partial Siberian Snake BOOSTER AGS Internal Polarimeter AGS 200 MeV Polarimeter AGS pC Polarimeters **Strong Helical AGS Snake** Rf Dipole

RHIC- polarized	pp	collider	to	study	spin	in	QCD
------------------------	----	----------	----	-------	------	----	-----

pp Run Year	2002	2003	2004	2005	2006	2008	2009(200/500)
< Polarization> %	15	30	40-45	45-50	60	45	55 / <mark>35</mark> *
L _{max} [10 ³⁰ s ⁻¹ cm ⁻²]	2	6	6	16	30	35	40 / <mark>85</mark> *
L _{int} [pb ⁻¹] at STAR (Long./Transverse)	0 / 0.3	0.3 / 0.25	0.4 / 0	3.1 / 0.1	8.5 / 3.4	0 /3.1	22 /10.5*

*first 500 GeV run

Qinghua Xu, Shandong University

Spin structure of nucleon

• In the naive Quark Model, the nucleon is made of three quarks - p(uud), n(udd) The quark spins make up the nucleon spin, since the quarks are in the s-orbit:

$\Delta\Sigma = 1$

• Ellis-Jaffe sum rule (1974) assumes strange quarks carry no net polarization, then relate $\Delta\Sigma$ to couplings in hyperons beta decay with SU(3)_f symmetry:

ΔΣ≈ 0.6

1988 - European Muon Collaboration (polarized DIS)
 "Spin Crisis"--- proton spin carried by quark spin is rather small: ΔΣ ~ 0.2
 As a result, strange quarks are expected to be polarized negatively.

$\Delta \mathbf{S}$ from polarized inclusive DIS

- Determination of ΔS , $\Delta \Sigma$ with polarized inclusive DIS:

$$\Gamma_{1}^{p} = \int_{0}^{1} g_{1}^{p}(x) dx = \frac{1}{2} \int \sum_{i} e_{i}^{2} \Delta q_{i}(x) = \frac{1}{18} [4\Delta U + \Delta D + \Delta S]^{0} \xrightarrow{0.06} (0 \text{ HERMES} (Q^{2} < 1 \text{ GeV})) \xrightarrow{g_{1}(x) = \frac{1}{2} \sum_{i} e_{i}^{2} \Delta q_{i}(x)} \xrightarrow{g_{1}(x) = \frac{1}{2} \sum_{i} e$$

 $\Delta q(x) = q^{+}(x) - q^{-}(x)$: helicity distribution function

• Together with neutron, hyperon β decay data using SU(3)_f symmetry:

 $\Rightarrow \Delta \Sigma = 0.33 \pm 0.03 \pm 0.01 \pm 0.03: \begin{cases} \Delta U \sim 0.84, \\ \Delta D \sim -0.43, & (\text{HERMES}, Q^2 = 5 \text{ GeV}^2) \\ \Delta S \sim -0.08 \pm 0.01 \pm 0.01 \pm 0.01^* \end{cases}$

*COMPASS also obtained similar results.

ΔS from semi-inclusive DIS

• Recent measurements in semi-inclusive DIS - consistent with zero:

Different as inclusive DIS results?

Our knowledge on ΔS is far from comprehensive.

Study ΔS at RHIC with hyperons?

- A's contain a strange quark, whose spin is expected to carry most of the Λ spin
- Λ polarization can be measured in experiment via weak decay

• Can $\Lambda(\overline{\Lambda})$ polarization measurements provide sensitivity to ΔS at RHIC?

Hyperon production in pp collisions

• The factorized framework enables perturbative description,

 $pp \rightarrow \Lambda/\overline{\Lambda} + X (-0.5 < y < 0.5), \sqrt{s} = 200 \text{ GeV}$

• Hyperon spin transfer D_{LL} provides access to Δf and ΔD :

$$D_{LL} = \frac{\sigma_{p^+ p \to \overline{\Lambda}^+ X} - \sigma_{p^+ p \to \overline{\Lambda}^- X}}{\sigma_{p^+ p \to \overline{\Lambda}^+ X} + \sigma_{p^+ p \to \overline{\Lambda}^- X}} = \frac{d\Delta\sigma}{d\sigma}$$

$\mathbf{D}_{\mathrm{LL}}\text{-}\mathbf{Longitudinal}$ spin transfer at RHIC

• Expectations at LO show sensitivity of D_{LL} for anti-Lambda to $\Delta \overline{s}$:

- Λ D_{LL} is less sensitive to $\Delta s,$ due to large u,d quark fragmentation.
- Promising measurements---effects potentially large enough to be observed.

STAR - Solenoid Tracker At RHIC

STAR data - 2005

~1.8X10⁶ events collected with minimum bias trigger (MB) after QA:

-residual background fraction is ~10% under the mass peak (1.109,1.121GeV), including random background and mis-identified $K_{s.}^{0}$

Extraction of spin transfer D_{LL}

• Λ polarization is usually extracted from the momentum distribution of its weak decay ($\Lambda \rightarrow p\pi^{-}$):

$$dN = \frac{N_{tot}}{2} A(\cos\theta^*) (1 + \alpha P_{\Lambda} \cos\theta^*)$$

$$\cos\theta^* \propto \vec{P}_{\Lambda} \cdot \vec{p}_p^*$$

α: decay parameter: 0.642A(cosθ*): detector acceptance

• D_{LL} has been extracted from Λ counts with opposite beam polarization within a small interval of $\cos\theta^*$:

 $D_{LL} = \frac{1}{\alpha \cdot P_{beam} < \cos\theta^* >} \cdot \frac{N^+ - N^-}{N^+ + N^-} , \text{ where the acceptance cancels.}$

$$N_{\Lambda}^{+} = N^{++} \frac{L_{--}}{L_{++}} + N^{+-} \frac{L_{--}}{L_{+-}}$$
$$N_{\Lambda}^{-} = N^{-+} \frac{L_{--}}{L_{-+}} + N^{--}$$

Relative luminosity ratio measured with BBC, and P_b in RHIC.

STAR data - 2005

• Extraction of D_{LL} with minimum bias (MB) data :

STAR triggered data - 2005 HT trigger for anti-proton

 TPC track (anti-proton from anti-Lambda) is projected to BEMC tower (Δη×Δφ=0.05×0.05), check whether its DSM adc # passes high tower (HT) trigger threshold:

- Large fraction (43%) of anti-proton matched tower passed threshold, and only tiny fraction in the case of p from Λ , consistent with annihilation effect.
- D_{LL} analysis with this special sample is almost trigger bias free, with p_T extended to 4 GeV.

STAR triggered data - 2005

• STAR was also triggered on energy deposits in jet-patches (JP) of the Barrel EMC,

Trigger on high p_T jets --> higher p_T hyperons in jets

Recorded a (biased) sample of Λ and $\overline{\Lambda}$ candidates with considerably higher p_T , although not directly triggered.

\mathbf{D}_{LL} results with HT & JP samples

STAR, PRD80, 111102R (2009)

• Systematic uncertainties vary from 0.01 to 0.03 for each point, which include:

6% RHIC measurement of P_beam, 2% residual transverse pol. at STAR, 2% decay parameter *a* (0.642±0.013), < 0.01 relative luminosity measurement, 23% (5%) pile-up effect for MB (JP) , 0.01~0.03 residual background, <0.01 trigger bias -JP (MC simulation).

D_{LL} Results of STAR

- D_{LL} for Lambda and anti-Lambda are consistent with each other
- Uncertainties are similar to the spread in model expectations.

Prospects from 2009 data

• Achieved (2005) and projected (2009) uncertainties on D_{LL} :

- p_T coverage will be extended significantly with 2009 data.

Summary

- Expectations for (anti-)Lambda spin transfer D_{LL} measurements at RHIC, show sensitivity to strange quark polarization (Δ s) at high p_T .
- We have performed the first proof-of-principle measurement with data of 2005 at RHIC:
 - -reached ~10% precision with transverse momentum up to 4 GeV; the uncertainties are similar to the spread of models.

 $< p_{T} >= 3.7 \text{ GeV and } < \eta >= 0.5: D_{LL}(\Lambda) = -0.03 \pm 0.13(stat) \pm 0.04(sys)$ $D_{LL}(\overline{\Lambda}) = -0.12 \pm 0.08(stat) \pm 0.04(sys)$

• p_T coverage is doubled out to ~8 GeV with data of 2009, and the statistics is expected to be further improved in future RHIC runs.

Outlook I -Transverse spin transfer and $\delta q(x)$

• Transverse spin transfer of hyperons can provide access to transverse spin structure of nucleon:

$$P_{T}^{H} = \frac{d\sigma^{(p_{\uparrow}p \to H_{\uparrow}X)} - d\sigma^{(p_{\uparrow}p \to H_{\downarrow}X)}}{d\sigma^{(p_{\uparrow}p \to H_{\downarrow}X)} + d\sigma^{(p_{\uparrow}p \to H_{\downarrow}X)}} = \frac{d\Delta_{T}\sigma}{d\sigma}$$

$$d\Delta_{T}\sigma^{(\bar{p}_{\perp}p \to \bar{H}_{\perp}X)} \propto \sum_{abcd} \int dx_{a} dx_{b} dz \delta f_{a}(x_{a}) f_{b}(x_{b}) \Delta_{T} D_{c}^{H}(z) d\Delta_{T} \hat{\sigma}^{(\bar{a}_{\perp}b \to \bar{c}_{\perp}d)}$$

$$Transversity distribution :$$

$$\delta f(x) = f_{\uparrow}(x) - f_{\downarrow}(x)$$
Transversely polarized fragmentation function, may be obtained at BELLE

- Transverse spin transfer can give insights into transversity.
- Such measurements can be made at mid-rapidity with TPC at STAR.

Transverse spin transfer in pp

- Measurements on transverse spin transfer:
 - -D_{NN}: spin transfer w.r.t. production plane (E704,1997):

- Significant spin transfer was found at large x_F range.
- Similar measurements possible at RHIC?

Outlook II- Forward hyperon physics

• Addition of Forward Hadron Calorimeter (FHC) at STAR may enable the study of forward Λ physics together with FMS through $\Lambda \rightarrow n\pi^0$ (Br=36%).

Longitudinal spin transfer at forward region

Qinghua Xu, Shandong University

Induced Λ polarization in unpolarized pp

- Large polarization with unpolarized beam p + p → Λ_↑ + X, observed in many experiments.
 -G.Bunce *et al*, PRL36,1113,(1976)
- LO pQCD calculation gives ~0 ($\propto m_q$). Kane, Pumplin & Repko, PRL41,1689(1978).

Measurement at higher energy (at RHIC) is expected !

Thank you!