Transverse Single-Spin Asymmetries for π⁰ and Electromagnetic Jets at Forward Rapidities in p[↑]+p Collisions at Center-of-Mass Energies of 200 GeV and 500 GeV at STAR

Latiful Kabir for the STAR Collaboration University of California, Riverside, CA, USA

4

5

6

Abstract

There have been numerous attempts, both experimentally and theoretically, to understand the 7 origin of the unexpectedly large transverse single-spin asymmetries (A_N) for inclusive hadron pro-8 duction at forward rapidity in $p^{\uparrow}+p$ collisions that persist from low to high center-of-mass energies. 9 Two proposed potential sources are the twist-3 contributions in the collinear factorization and the 10 transverse-momentum-dependent contributions from either the initial-state quark and gluon Sivers 11 functions or the final-state Collins fragmentation function. To investigate the underlying physics 12 leading to this large A_N , we study $\pi^0 A_N$ with different topologies – isolated and non-isolated, and 13 A_N for electromagnetic jets (EM-jets) of different substructures using Forward Meson Spectrometer 14 (FMS) detector at STAR. Jet A_N is sensitive to the initial state effect and can provide access to 15 Sivers functions. To investigate final-state effects, we measure the Collins asymmetry of π^0 inside 16 EM-jets. We present the most recent results for these asymmetries from $p^{\uparrow}+p$ collisions at 200 17 GeV and 500 GeV. We also present new preliminary results of A_N for EM-jets in FMS and End-18 cap Electromagnetic Calorimeter (EEMC) using p^+p collisions at 200 GeV where we explore the 19 dependences of A_N on photon multiplicity inside the jet, jet transverse momentum, and jet energy. 20 These results provide rich information towards understanding the physics mechanism of large A_N 21 in hadron collisions. 22