Transverse Spin Dependent Azimuthal Correlations of Charged Pion Pairs in $p^{\uparrow}p$ collisions at $\sqrt{s} = 510$ GeV at STAR

Navagyan Ghimire for the STAR Collaboration Temple University, Philadelphia, PA, USA

Abstract

The trasverse polarization of quarks within a trasversely polarized nucleon, $h_1^q(x)$, 1 can only be accessed through processes involving its coupling with another chiral-odd 2 functions, such as the spin-dependent interference fragmentation function (IFF) in po-3 larized proton-proton collisions. The coupling of $h_1^q(x)$ and IFF leads to a measurable 4 azimuthal correlation asymmetry (A_{UT}) of di-hadron pairs in the final state. In pre-5 vious work, the STAR experiment at RHIC measured a non-zero A_{UT} using polarized 6 proton-proton $(p^{\uparrow}p)$ data from 2011 at $\sqrt{s} = 500$ GeV, with an integrated luminosity 7 of 25 pb⁻¹. The precise measurement of A_{UT} together with unpolarized di-hadron cross 8 section will help to constrain the $h_1^q(x)$ in the global fits. In 2017, the STAR exper-9 iment collected dataset of approximately 350 pb⁻¹ from $p^{\uparrow}p$ collisions at $\sqrt{s} = 510$ 10 GeV. In 2022, another dataset featuring $p^{\uparrow}p$ collisions at $\sqrt{s} = 508$ GeV of an inte-11 grated luminosity of approximately 400 pb^{-1} was collected. These new datasets will 12 significantly improve the statistical precision of the A_{UT} measurement. In this talk, we 13 will present an update on the measurement of A_{UT} for pion pairs in the pseudorapidity 14 region $|\eta| < 1$ based on the 2017 $p^{\uparrow}p$ dataset and the projection for the 2022 dataset. 15