Measurement of Λ -hyperon spin-spin correlations in p + p collisions at $\sqrt{s} = 200$ and 510 GeV by the STAR experiment

Jan Vanek (for the STAR collaboration)

Brookhaven National Laboratory

About 50 years ago, it was discovered that Λ hyperons are produced po-5 larized in collisions of unpolarized protons on beryllium. Despite enormous experimental and theoretical efforts, the origin of this polarization remains inconclusive to date. The Λ polarization has also been observed in various collision 8 systems, from e^+e^- to heavy-ion collisions. A recently proposed technique for 9 the investigation of the Λ hyperon polarization is a measurement of $\Lambda \overline{\Lambda}$, $\Lambda \Lambda$, 10 and $\bar{\Lambda}\bar{\Lambda}$ spin-spin correlations. This technique is expected to help understand 11 if the polarization is generated at early stages of the collisions, e.g. from ini-12 tial state parton spin correlation, or if it is a final state effect originating from 13 hadronization. 14

In this talk, we present a status of the first measurement utilizing this new experimental method in p + p collisions at $\sqrt{s} = 200$ and 510 GeV by the STAR experiment. The Λ and $\bar{\Lambda}$ candidates are reconstructed at mid-rapidity (|y| < 1) and in two transverse momentum ($p_{\rm T}$) bins which allows us to extract the Λ hyperon spin-spin correlations for various $p_{\rm T}$ combinations of hyperons in $\Lambda\bar{\Lambda}$, $\Lambda\Lambda$, and $\bar{\Lambda}\bar{\Lambda}$ pairs. This measurement will provide new insight into Λ hyperon spin polarization in p + p collisions at RHIC energies.