

Measurements of charm hadron production and anisotropic flow in Au+Au collisions at 200 GeV with the STAR experiment at RHIC

Sooraj Radhakrishnan for the STAR Collaboration Lawrence Berkeley National Laboratory

Heavy flavor quarks as probes of QGP and initial conditions

 $m_{c,b} \gg T_{QGP}$ —> Produced predominantly from initial hard scatterings $m_{c,b} \gg \Lambda_{QCD}$ —> Production cross sections amenable to pQCD calculations ==> Ideal probes to study medium effects!!

Heavy flavor quarks as probes of QGP and initial conditions

 $m_{c,b} \gg T_{QGP}$ —> Produced predominantly from initial hard scatterings $m_{c,b} \gg \Lambda_{QCD}$ —> Production cross sections amenable to pQCD calculations ==> Ideal probes to study medium effects!!

- Elliptic and triangular flow: heavy quark diffusion through medium —> medium properties
- Directed flow: impact of early time magnetic field

Production and hadrochemistry

- In medium energy loss
- $D_s,\,\Lambda_c$ yields: hadronization mechanism

STAR Heavy Flavor Tracker (HFT)

STAR Heavy Flavor Tracker (HFT)

- Excellent track pointing resolution
- Enables topological reconstruction of heavy flavor hadrons.

	w/o HFT	w/ HFT
	2010+2011	2014
#events(MB) analyzed	1.1 billion	~900 million
sig. per billion events	13	220

STAR: Phys. Rev. Lett. 113, 142301 (2014)

STAR: Phys. Rev. Lett. 118, 212301 (2017)

Elliptic flow of D⁰ mesons

- Large v₂ values, comparable to light hadrons, is seen for D⁰ mesons
- Clear mass ordering seen below 2 GeV/c

- v₂ values of D⁰ scaled with number of constituent quarks (NCQ) follow the same trend as light hadrons
- Suggest charm quarks flow with the QGP

Theory comparisons

- 3D viscous hydro describes the data well below 4 GeV/c
 - suggest thermalized charm quarks in the medium
- Dynamic models with temperature dependent $2\pi T D_s$ in the range 2 12 (in the range T_c 2T_c), also describe the data well

	2πTD _{HQ}	χ²/N.D.F.	p value
SUBATECH	2-4	15.2/8	0.06
TAMU c diff.	5-12	10.0/8	0.26
TAMU no c diff.		29.5/8	2x10 ⁻⁴
Duke	7	35.7/8	2x10 ⁻⁵
LBT	3-6	11.1/8	0.19
PHSD	5-12	8.7/7	0.28
3D viscous hydro		3.6/6	0.73

Triangular flow

- Non-zero D⁰ v₃ values; comparable to light hadron v₃
- Consistent with NCQ scaling within large error bars
- Also points to strong interactions between charm quarks and the QGP medium

Directed flow, probe for early magnetic field?

- Large magnetic field (~10¹⁹ Gauss) produced in early stages of heavy-ion collisions
- Heavy quarks predominantly produced during initial hard scatterings
 - Experience Lorentz deflection transverse to the direction of motion
 - Transient magnetic field ==> gives rise to a Faraday current; opposite to Lorentz deflection
 - Significant directed flow (v₁) is predicted for D⁰ mesons

D^o meson directed flow measurement

- Study of D⁰ azimuthal distribution w.r.t. event plane that is determined from spectator neutrons detected by ZDC-SMD (η > 6.4)
- Pion v₁ values (with HFT used in tracking) are consistent with the published data

 Measurement of D⁰ v₁ is ongoing using data (with HFT) from 2014+2016

Strangeness and baryon enhancements

- How do charm quarks hadronize in QGP?
- In case of coalescence hadronization of charm, one expects for intermediate p⊤ (2-6 GeV/c):
 - enhancement of strange relative to non-strange charmed mesons
 - enhancement of charmed baryon/meson ratio

Ko: Phys.Rev.C 79 (2009) 044905 Greco: Phys.Rev.D 90 (2014) 054018 SHM: Phys.Rev.C 79 (2009) 044905

 Magnitudes of enhancement also depend on degree of charm quark thermalization, extent of strangeness enhancement, presence of diquarks

D_s enhancement at RHIC

- Strong enhancement is seen for the D_s/D⁰ yields ratio relative to PYTHIA
 => charm quarks in QGP hadronize very differently than in vacuum
- Enhancement is larger than in the TAMU model (uses coalesence mechanism) prediction.
- Similar enhancement as for the light hadrons for p_T > 3.5 GeV/c. Smaller values in 2.5 3.5 GeV/c

Λ_c production in heavy-ion collisions

- $\Lambda_c (c\tau \sim 60 \mu m)$ reconstructed in $\pi K p$ channel
- First measurement in heavy-ion collisions!

Λ_c production in heavy ion collisions

- Significant baryon/meson enhancement in the charm sector
- Magnitude is consistent with that of light hadrons
- Coalescence models with thermalized charm quarks in medium agree with the measurement

Summary

- Elliptic and triangular flow of D⁰:
 - Follow mass ordering; NCQ scaled values agree with those for light hadrons
 - Model calculations with the temperature dependent charm quark diffusion coefficient describe v₂ data
 - Can be described by 3D viscous hydro at low p_T (< 4 GeV/c)
 - Suggest near thermalized charm quarks flowing with the QGP
- Significant enhancement of D_s/D^0 and Λ_c/D^0 ratios
 - Similar enhancements with those for light hadrons
 - For Λ_c the coalescence model with thermalized charm quarks agrees with data
- Measurements suggest strongly interacting and thermalized charm quarks in QGP medium
- Results are from 2014 data. New results are coming soon with the improved precision from 2014+2016 data combined

Back Up

Heavy flavor suppression at RHIC

 Energy loss of color charged partons through medium: radiative and collisional energy loss

• Expect $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$

- Strong suppression of D^0 and $D^{\text{+/-}}$ at high p_{T}
- R_{AA} values for D^0 are consistent with those for pions (for $p_T > 4$ GeV)
 - values depend on the spectrum shape
 - not R_{AA} of charm quarks (hadronization)
- Models with strong charm medium interaction describe the data.

Elliptic flow and charm quark diffusion

SUBATECH: pQCD + hard thermal loop

P. B. Gossiaux, J. Aichelin, T. Gousset, and V. Guiho, Strangeness in quark matter **TAMU: T-matrix, non-perturbative, internal energy potential** M. He, R. J. Fries, and R. Rapp, PRC86, 014903 (2012) **Duke: free constant Ds, fit to LHC high p_T R_{AA}** S. Cao, G.-Y. Qin, and S. A. Bass, PRC88, 044907 (2013) **hydro: A 3D viscous hydrodynamic model** L.-G. Pang, Y. Hatta, X.-N. Wang, and B.-W. Xiao, PRD91, 074027 (2015) **PHSD: Parton-Hadron-String Dynamics, a transport model** H. Berrehrah et al. PRC90 (2014) 051901 **LBT: A Linearized Boltzmann Transport model** S. Cao, T. Luo, G.-Y. Qin, and X.-N. Wang, PRC94, 014909 (2016)